
CS/ECE 374 Lab 12 Solutions — Nov 14 Fall 2018

1. Recall the class scheduling problem described in lecture on Tuesday. We are given two arrays
S[1 .. n] and F[1 .. n], where S[i] < F[i] for each i, representing the start and finish times of n
classes. Your goal is to find the largest number of classes you can take without ever taking two
classes simultaneously.

For each of the following greedy algorithms, either prove that the algorithm always constructs an
optimal schedule, or describe a small input example for which the algorithm does not produce an
optimal schedule. Assume that all algorithms break ties arbitrarily (that is, in a manner that is
completely out of your control). Exactly three of these greedy strategies actually work.

(a) Choose the course x that ends last, discard classes that conflict with x , and recurse.

Solution: This doesn’t work. Given the input , the greedy algo-
rithm chooses the single long course, but the optimal schedule contains all the short
courses. �

(b) Choose the course x that starts first, discard all classes that conflict with x , and recurse.

Solution: This doesn’t work. Given the input , the greedy algo-
rithm chooses the single long course, but the optimal schedule contains all the short
courses. �

(c) Choose the course x that starts last, discard all classes that conflict with x , and recurse.

Solution: This greedy strategy works! In fact, this is just a time-reversed version of
the greedy algorithm proved correct in class. Correctness follows by induction from
the following claim:

Claim 1. There is an optimal schedule that includes the course that starts last.

Proof: Let x be the course that starts last. Let S be any schedule that does not
contain x , and let z be the last course in S. Because x starts last, we have S[z]< S[x].
Thus F[i]< S[z]< S[x] for every other class i in S, which implies that S′ = S− z+ x
is still a valid schedule, containing the same number of classes as S. In particular, if S
is an optimal schedule, then S′ is an optimal schedule containing x . �

�

(d) Choose the course x with shortest duration, discard all classes that conflict with x , and
recurse.

Solution: This doesn’t work. Given the input , this greedy algo-
rithm chooses the single course in the middle, but the optimal schedule contains the
other two courses. �

(e) Choose a course x that conflicts with the fewest other courses, discard all classes that
conflict with x , and recurse.
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Solution: This doesn’t work. Given the input , this greedy algo-
rithm would choose the course in the center, which has only two conflicts, and thus
would return a schedule containing only three courses. But the optimal schedule
contains four courses. �

(f) If no classes conflict, choose them all. Otherwise, discard the course with longest duration
and recurse.

Solution: This doesn’t work. Given the intervals , the greedy
algorithm chooses the single interval in the middle, but the optimal schedule contains
the other two intervals. �

(g) If no classes conflict, choose them all. Otherwise, discard a course that conflicts with the
most other courses and recurse.

Solution: This doesn’t work. Given the input , this greedy algo-
rithm would discard one of the courses in the middle of the bottom row, which has
only five conflicts, and thus would return a schedule containing only three courses.
But the optimal schedule contains four courses. �

(h) Let x be the class with the earliest start time, and let y be the class with the second earliest
start time.

• If x and y are disjoint, choose x and recurse on everything but x .
• If x completely contains y , discard x and recurse.
• Otherwise, discard y and recurse.

Solution: This greedy strategy works! We need to prove three claims, one for each
case.

Claim 2. If x and y are disjoint, then every optimal schedule contains x .

Proof: If x and y are disjoint, then F[x] < S[y], which ipmlues that F[x] < S[i]
for all i 6= x . Thus, if S is any valid schedule that does not contain x , then S + x is a
larger valid schedule. Thus, no optimal schedule excludes x . �

Claim 3. If x contains y , there is an optimal schedule that excludes x .

Proof: If x contains y, then every class that conflicts with y also conflicts with x .
Thus, for any valid schedule S that contains x , there is another valid schedule S− x+ y
of the same size that excludes x . �

Claim 4. If x and y overlap, but x does not contain y, there is an optimal schedule
that excludes y .

Proof: Suppose x and y overlap, but x does not contain y . Then x must end before
y ends, and therefore every class that conflicts with x also conflicts with y . Thus, for
any valid schedule S that contains y , there is another valid schedule S − y + x of the
same size that excludes y . �

The correctness of this greedy strategy now follows by induction. �
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(i) If any course x completely contains another course, discard x and recurse. Otherwise,
choose the course y that ends last, discard all classes that conflict with y , and recurse.

Solution: This strategy actually works!

Claim 5. If any course x contains another course y, there is an optimal schedule that
does not include x .

Proof: Let S be any valid schedule that contains x . Then S − x + y is another valid
schedule of the same size. �

Claim 6. Suppose no course contains any other course. Then there is an optimal
schedule containing the course that ends last.

Proof: If no course contains any other course, then the class that ends last is also the
class that starts last. This claim now follows from Claim 1 (in problem 3). �

The correctness of this greedy strategy now follows by induction. �
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2. A party of n people have come to dine at a fancy restaurant and each person has ordered a
different item from the menu. Let D1, D2, . . . , Dn be the items ordered by the diners. Since this is
a fancy place, each item is prepared in a two-stage process. First, the head chef (there is only
one head chef) spends a few minutes on each item to take care of the essential aspects and then
hands it over to one of the many sous-chefs to finish off. Assume that there are essentially an
unlimited number of sous-chefs who can work in parallel on the items once the head chef is done.
Each item Di takes hi units of time for the head chef followed by si units of time for the sous-chef
(the sous-chefs are all identical). The diners want all their items to be served at the same time
which means that the last item to be finished defines the time when they can be served. The
goal of the restaurant is to serve the diners as early as possible. Consider the following greedy
algorithms that order the items according to different criteria. For each of them either describe a
counter example that shows that the order does not yield an optimum solution or give a proof
that the ordering yields an optimum solution for all instances.

• Order the items in increasing order of hi + si .

• Order the items in decreasing order of hi + si .

• Order the items in increasing order of hi .

• Order the items in decreasing order of hi .

• Order the items in increasing order of si .

• Order the items in decreasing order of si .

Solution: The last option gives an optimal schedule. One can find counter examples for
all the others with just two items. We leave it as an exercise to find them.

We will first prove that ordering the items in decreasing order of si is optimal. Assume
without loss of generality that the items are numbered such that s1 ≥ s2 ≥ . . . ≥ sn. Let
S = i1, i2, . . . , in an optimum ordering of items with fewest inversions. If there no inversions
in this ordering then we are done. Otherwise there are two adjecent items in the ordering
i` and i`+1 such that i` > i`+1. Consider swapping these items to obtain a new ordering S′.
Let fi` and f ′i` denote the finish times of i` in S and S′ and similarly fi`+1

and f ′i`+1
. Note that

no other items are affected by the swapm. Letting t denote the time at which i` is started
by the head chef in S we observe that fi` = t + hi` + si` and fi`+1

= t + hi` + hi`+1
+ si`+1

.
After the swap we have f ′i` = t + hi` + hi`+1

+ si` and f ′i`+1
= t + hi`+1

+ si`+1
. Since si` ≤ si`+1

we have

max{ f ′i` , f ′i`+1
}=max{t+hi`+hi`+1

+si` , t+hi`+1
+si`+1

} ≤ t+hi`+hi`+1
+si`+1

=max{ fi` , fi`+1
}.

This implies that the new ordering is no worse than the previous one (why?) but has one
fewer inversion contradicting the choice of the ordering S as the an optimum schedule with
the fewest inversions.

�
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