
CS/ECE 374 Lab 12½ — November 16 Fall 2018

Prove that the following languages are undecidable.

1. AcceptIllini :=
�

〈M〉
�

� M accepts the string ILLINI
	

Solution: For the sake of argument, suppose there is an algorithm DecideAcceptIllini
that correctly decides the language AcceptIllini. Then we can solve the halting problem
as follows:

DecideHalt(〈M , w〉):
Encode the following Turing machine M ′:

M ′(x):
run M on input w
return True

if DecideAcceptIllini(〈M ′〉)
return True

else
return False

We prove this reduction correct as follows:

=⇒ Suppose M halts on input w.
Then M ′ accepts every input string x .
In particular, M ′ accepts the string ILLINI.
So DecideAcceptIllini accepts the encoding 〈M ′〉.
So DecideHalt correctly accepts the encoding 〈M , w〉.

⇐= Suppose M does not halt on input w.
Then M ′ diverges on every input string x .
In particular, M ′ does not accept the string ILLINI.
So DecideAcceptIllini rejects the encoding 〈M ′〉.
So DecideHalt correctly rejects the encoding 〈M , w〉.

In both cases, DecideHalt is correct. But that’s impossible, because Halt is undecidable.
We conclude that the algorithm DecideAcceptIllini does not exist. �

As usual for undecidablility proofs, this proof invokes four distinct Turing machines:

• The hypothetical algorithm DecideAcceptIllini.
• The new algorithm DecideHalt that we construct in the solution.
• The arbitrary machine M whose encoding is part of the input to DecideHalt.
• The special machine M ′ whose encoding DecideHalt constructs (from the encoding

of M and w) and then passes to DecideAcceptIllini.

1



CS/ECE 374 Lab 12½ — November 16 Fall 2018

2. AcceptThree :=
�

〈M〉
�

� M accepts exactly three strings
	

Solution: For the sake of argument, suppose there is an algorithm DecideAcceptThree
that correctly decides the language AcceptThree. Then we can solve the halting problem
as follows:

DecideHalt(〈M , w〉):
Encode the following Turing machine M ′:

M ′(x):
run M on input w
if x = ε or x = 0 or x = 1

return True
else

return False

if DecideAcceptThree(〈M ′〉)
return True

else
return False

We prove this reduction correct as follows:

=⇒ Suppose M halts on input w.
Then M ′ accepts exactly three strings: ε, 0, and 1.
So DecideAcceptThree accepts the encoding 〈M ′〉.
So DecideHalt correctly accepts the encoding 〈M , w〉.

⇐= Suppose M does not halt on input w.
Then M ′ diverges on every input string x .
In particular, M ′ does not accept exactly three strings (because 0 6= 3).
So DecideAcceptThree rejects the encoding 〈M ′〉.
So DecideHalt correctly rejects the encoding 〈M , w〉.

In both cases, DecideHalt is correct. But that’s impossible, because Halt is undecidable.
We conclude that the algorithm DecideAcceptThree does not exist. �

2



CS/ECE 374 Lab 12½ — November 16 Fall 2018

3. AcceptPalindrome :=
�

〈M〉
�

� M accepts at least one palindrome
	

Solution: For the sake of argument, suppose there is an algorithmDecideAcceptPalindrome
that correctly decides the language AcceptPalindrome. Then we can solve the halting
problem as follows:

DecideHalt(〈M , w〉):
Encode the following Turing machine M ′:

M ′(x):
run M on input w
return True

if DecideAcceptPalindrome(〈M ′〉)
return True

else
return False

We prove this reduction correct as follows:

=⇒ Suppose M halts on input w.
Then M ′ accepts every input string x .
In particular, M ′ accepts the palindrome RACECAR.
So DecideAcceptPalindrome accepts the encoding 〈M ′〉.
So DecideHalt correctly accepts the encoding 〈M , w〉.

⇐= Suppose M does not halt on input w.
Then M ′ diverges on every input string x .
In particular, M ′ does not accept any palindromes.
So DecideAcceptPalindrome rejects the encoding 〈M ′〉.
So DecideHalt correctly rejects the encoding 〈M , w〉.

In both cases, DecideHalt is correct. But that’s impossible, because Halt is undecidable.
We conclude that the algorithm DecideAcceptPalindrome does not exist.

Yes, this is exactly the same proof as for problem 1. �

3


