
CS/ECE 374 Lab 12½ Solutions — April 21 Spring 2017

1. A Hamiltonian cycle in a graph G is a cycle that goes through every vertex of G exactly once.
Deciding whether an arbitrary graph contains a Hamiltonian cycle is NP-hard.

A tonian cycle in a graph G is a cycle that goes through at least half of the vertices of G. Prove
that deciding whether a graph contains a tonian cycle is NP-hard.

Solution (duplicate the graph): I’ll describe a polynomial-time reduction from HAMILTONIANCYCLE.
Let G be an arbitrary graph. Let H be a graph consisting of two disjoint copies of G, with no edges
between them; call these copies G1 and G2. I claim that G has a Hamiltonian cycle if and only if H
has a tonian cycle.

=⇒ Suppose G has a Hamiltonian cycle C . Let C1 be the corresponding cycle in G1. C1 contains
exactly half of the vertices of H, and thus is a tonian cycle in H.

⇐= On the other hand, suppose H has a tonian cycle C . Because there are no edges between the
subgraphs G1 and G2, this cycle must lie entirely within one of these two subgraphs. G1 and
G2 each contain exactly half the vertices of H, so C must also contain exactly half the vertices
of H, and thus is a Hamiltonian cycle in either G1 or G2. But G1 and G2 are just copies of G.
We conclude that G has a Hamiltonian cycle.

Given G, we can construct H in polynomial time by brute force. �

Solution (add n new vertices): I’ll describe a polynomial-time reduction from HAMILTONIANCYCLE.
Let G be an arbitrary graph, and suppose G has n vertices. Let H be a graph obtained by adding n
new vertices to G, but no additional edges. I claim that G has a Hamiltonian cycle if and only if H
has a tonian cycle.

=⇒ Suppose G has a Hamiltonian cycle C . Then C visits exactly half the vertices of H, and thus
is a tonian cycle in H.

⇐= On the other hand, suppose H has a tonian cycle C . This cycle cannot visit any of the new
vertices, so it must lie entirely within the subgraph G. Since G contains exactly half the
vertices of H, the cycle C must visit every vertex of G, and thus is a Hamiltonian cycle in G.

Given G, we can construct H in polynomial time by brute force. �

1

CS/ECE 374 Lab 12½ Solutions — April 21 Spring 2017

2. Big Clique is the following decision problem: given a graph G = (V, E), does G have a clique of size
at least n/2 where n= |V | is the number of nodes? Prove that Big Clique is NP-hard.

Solution: Recall that an instance of CLIQUE consists of a graph G = (V, E) and integer k. (G, k) is
a YES instance if G has a clique of size at least k, otherwise it is a NO instance. For simplicity we
will assume n is an even number.

We describe a polynomial-time reduction from CLIQUE to BIG CLIQUE. We consider two cases
depending on whether k ≤ n/2 or not. If k ≤ n/2 we obtain a graph G′ = (V ′, E′) as follows.
We add a set of X new vertices where |X | = n − 2k; thus V ′ = V] X . We make X a clique by
adding all possible edges between vertices of X . In addition we connect each vertex v ∈ X to each
vertex u ∈ V . In other words E′ = E ∪ {(u, v) | u ∈ V, v ∈ X } ∪ {(a, b) | a, b ∈ X }. If k > n/2 we let
G′ = (V ′, E′) where V ′ = V] X and E′ = E, where |X | = 2k − n. In other words we add 2k − n
new vertices which are isolated and have no edges incident on them.

We make the following relatively easy claims that we leave as exercises.

Claim 1. Suppose k ≤ n/2. Then for any clique S in G, S ∪ X is a clique in G′. For any clique
S′ ∈ G′ the set S′ \ X is a clique in G.

Claim 2. Suppose k > n/2. Then S is a clique in G′ iff S ∩ X = ; and S is a clique in G.

Now we prove the correctness of the reduction. We need to show that G has a clique of size k
if and only if G′ has a clique of size n′/2 where n′ is the number of nodes in G′.

=⇒ Suppose G has a clique S of size k. We consider two cases. If k > n/2 then n′ = n+2k−n = 2k;
note that S is a clique in G′ as well and hence S is a big clique in G′ since |S| = k ≥ n′/2.
If k ≤ n/2, by the first claim, S ∪ X is a clique in G′ of size k + |X | = k + n− 2k = n− k.
Moreover, n′ = n+ n−2k = 2n−2k and hence S∪ X is a big clique in G′. Thus, in both cases
G′ has a big clique.

⇐= Suppose G′ has a clique of size at least n′/2 in G′. Let it be S′; |S′| ≥ n′/2. We consider two
cases again. If k ≤ n/2, we have n′ = 2n−2k and |S′| ≥ n− k. By the first claim, S = S′ \X is
a clique in G. |S| ≥ |S′|−|X | ≥ n−k−(n−2k)≥ k. Hence G has a clique of size k. If k > n/2,
by the second claim S′ is a clique in G and |S′| ≥ n′/2 = (n+ 2k− n)/2 = k. Therefore, in
this case as well G has a clique of size k.

�

2

CS/ECE 374 Lab 12½ Solutions — April 21 Spring 2017

3. Recall the following kCOLOR problem: Given an undirected graph G, can its vertices be colored
with k colors, so that every edge touches vertices with two different colors?

(a) Describe a direct polynomial-time reduction from 3COLOR to 4COLOR.

Solution: Suppose we are given an arbitrary graph G. Let H be the graph obtained from G
by adding a new vertex a (called an apex) with edges to every vertex of G. I claim that G is
3-colorable if and only if H is 4-colorable.

=⇒ Suppose G is 3-colorable. Fix an arbitrary 3-coloring of G, and call the colors “red”,
“green”, and “blue”. Assign the new apex a the color “plaid”. Let uv be an arbitrary edge
in H.

– If both u and v are vertices in G, they have different colors.
– Otherwise, one endpoint of uv is plaid and the other is not, so u and v have different

colors.
We conclude that we have a valid 4-coloring of H, so H is 4-colorable.

⇐= Suppose H is 4-colorable. Fix an arbitrary 4-coloring; call the apex’s color “plaid” and
the other three colors “red”, “green”, and “blue”. Each edge uv in G is also an edge of H
and therefore has endpoints of two different colors. Each vertex v in G is adjacent to the
apex and therefore cannot be plaid. We conclude that by deleting the apex, we obtain a
valid 3-coloring of G, so G is 3-colorable.

We can easily transform G into H in polynomial time by brute force. �

3

CS/ECE 374 Lab 12½ Solutions — April 21 Spring 2017

(b) Prove that kCOLOR problem is NP-hard for any k ≥ 3.

Solution (direct): The lecture notes include a proof that 3COLOR is NP-hard. For any integer
k > 3, I’ll describe a direct polynomial-time reduction from 3COLOR to kCOLOR.

Let G be an arbitrary graph. Let H be the graph obtain from G by adding k − 3 new
vertices a1, a2, . . . , ak−3, each with edges to every other vertex in H (including the other ai ’s).
I claim that G is 3-colorable if and only if H is k-colorable.

=⇒ Suppose G is 3-colorable. Fix an arbitrary 3-coloring of G. Color the new vertices
a1, a2, . . . , ak−3 with k− 3 new distinct colors. Every edge in H is either an edge in G or
uses at least one new vertex ai; in either case, the endpoints of the edge have different
colors. We conclude that H is k-colorable.

⇐= Suppose H is k-colorable. Each vertex ai is adjacent to every other vertex in H, and
therefore is the only vertex of its color. Thus, the vertices of G use only three distinct
colors. Every edge of G is also an edge of H, so its endpoints have different colors. We
conclude that the induced coloring of G is a proper 3-coloring, so G is 3-colorable.

Given G, we can construct H in polynomial time by brute force. �

Solution (induction): Let k be an arbitrary integer with k ≥ 3. Assume that jCOLOR is
NP-hard for any integer 3≤ j < k. There are two cases to consider.

• If k = 3, then kCOLOR is NP-hard by the reduction from 3SAT in the lecture notes.
• Suppose k = 3. The reduction in part (a) directly generalizes to a polynomial-time

reduction from (k − 1)COLOR to kCOLOR: To decide whether an arbitrary graph G is
(k− 1)-colorable, add an apex and ask whether the resulting graph is k-colorable. The
induction hypothesis implies that (k− 1)COLOR is NP-hard, so the reduction implies that
kCOLOR is NP-hard.

In both cases, we conclude that kCOLOR is NP-hard. �

4

CS/ECE 374 Lab 12½ Solutions — April 21 Spring 2017

To think about later:

3. Let G be an undirected graph with weighted edges. A Hamiltonian cycle in G is heavy if the total
weight of edges in the cycle is at least half of the total weight of all edges in G. Prove that deciding
whether a graph contains a heavy Hamiltonian cycle is NP-hard.

Solution (two new vertices): I’ll describe a polynomial-time a reduction from the Hamiltonian
path problem. Let G be an arbitrary undirected graph (without edge weights). Let H be the
edge-weighted graph obtained from G as follows:

• Add two new vertices s and t.

• Add edges from s and t to all the other vertices (including each other).

• Assign weight 1 to the edge st and weight 0 to every other edge.

The total weight of all edges in H is 1. Thus, a Hamiltonian cycle in H is heavy if and only if it
contains the edge st. I claim that H contains a heavy Hamiltonian cycle if and only if G contains a
Hamiltonian path.

=⇒ First, suppose G has a Hamiltonian path from vertex u to vertex v. By adding the edges vs,
st, and tu to this path, we obtain a Hamiltonian cycle in H. Moreover, this Hamiltonian cycle
is heavy, because it contains the edge st.

⇐= On the other hand, suppose H has a heavy Hamiltonian cycle. This cycle must contain the
edge st, and therefore must visit all the other vertices in H contiguously. Thus, deleting
vertices s and t and their incident edges from the cycle leaves a Hamiltonian path in G.

Given G, we can easily construct H in polynomial time by brute force. �

Solution (smartass): I’ll describe a polynomial-time a reduction from the standard Hamiltonian
cycle problem. Let G be an arbitrary graph (without edge weights). Let H be the edge-weighted
graph obtained from G by assigning each edge weight 0. I claim that H contains a heavy Hamilto-
nian cycle if and only if G contains a Hamiltonian path.

=⇒ Suppose G has a Hamiltonian cycle C . The total weight of C is at least half the total weight
of all edges in H, because 0≥ 0/2. So C is a heavy Hamiltonian cycle in H.

⇐= Suppose H has a heavy Hamiltonian cycle C . By definition, C is also a Hamiltonian cycle in
G.

Given G, we can easily construct H in polynomial time by brute force. �

5

