
CS/ECE 374 Lab 14 Solutions — Dec 5 Fall 2018

Prove that each of the following problems is NP-hard.

1. Given an undirected graph G, does G contain a simple path that visits all but 374 vertices?

Solution: We prove this problem is NP-hard by a reduction from the undirected Hamiltonian
path problem. Given an arbitrary graph G, let H be the graph obtained from G by adding 374
isolated vertices. Call a path in H almost-Hamiltonian if it visits all but 374 vertices. I claim that
G contains a Hamiltonian path if and only if H contains an almost-Hamiltonian path.

⇒ Suppose G has a Hamiltonian path P. Then P is an almost-Hamiltonian path in H, because it
misses only the 374 isolated vertices.

⇐ Suppose H has an almost-Hamiltonian path P. This path must miss all 374 isolated vertices
in H, and therefore must visit every vertex in G. Every edge in H, and therefore every edge
in P, is also na edge in G. We conclude that P is a Hamiltonian path in G.

Given G, we can easily build H in polynomial time by brute force. �

2. Given an undirected graph G, does G have a spanning tree in which every node has degree at most
374?

Solution: We prove this problem is NP-hard by a reduction from the undirected Hamiltonian path
problem. Given an arbitrary graph G, let H be the graph obtained by attaching a fan of 372 edges
to every vertex of G. Call a spanning tree of H almost-Hamiltonian if it has maximum degree
374. I claim that G contains a Hamiltonian path if and only if H contains an almost-Hamiltonian
spanning tree.

⇒ Suppose G has a Hamiltonian path P. Let T be the spanning tree of H obtained by adding
every fan edge in H to P. Every vertex v of H is either a leaf of T or a vertex of P. If v ∈ P,
then degP(v)≤ 2, and therefore degH(v) = degP(v) + 372≤ 374. We conclude that H is an
almost-Hamiltonian spanning tree.

⇐ Suppose H has an almost-Hamiltonian spanning tree T . The leaves of T are precisely the
vertices of H with degree 1; these are also precisely the vertices of H that are not vertices
of G. Let P be the subtree of T obtained by deleting every leaf of T . Observe that P is a
spanning tree of G, and for every vertex v ∈ P, we have degP(v) = degT (v)− 372≤ 2. We
conclude that P is a Hamiltonian path in G.

Given G, we can easily build H in polynomial time by brute force. �

1



CS/ECE 374 Lab 14 Solutions — Dec 5 Fall 2018

3. Given an undirected graph G, does G have a spanning tree with at most 374 leaves?

Solution: We prove this problem is NP-hard by a reduction from the undirected Hamiltonian path
problem.1 Given an arbitrary graph G, let H be the graph obtained from G by adding the following
vertices and edges:

• First we add a vertex z with edges to every other vertex in z.

• Then we add 373 vertices `1, . . . ,`373, each with edges to t and nothing else.

Call a spanning tree of H almost-Hamiltonian if it has at most 374 leaves. I claim that G contains
a Hamiltonian path if and only if H contains an almost-Hamiltonian spanning tree.

⇒ Suppose G has a Hamiltonian path P. Suppose P starts at vertex s and ends at vertex t. Let
T be subgraph of H obtained by adding the edge tz and all possible edges z`i. Then T is a
spanning tree of H with exactly 374 leaves, namely s and all 373 new vertices `i .

⇐ Suppose H has an almost-Hamiltonian spanning tree T . Every node `i is a leaf of T , so T
must consist of the 373 edges z`i and a simple path from z to some vertex s of G. Let t be
the only neighbor of z in T that is not a leaf `i , and let P be the unique path in T from s to t.
This path visits every vertex of G; in other words, P is a Hamiltonian path in G.

Given G, we can easily build H in polynomial time by brute force. �

1Are you noticing a pattern here?

2



CS/ECE 374 Lab 14 Solutions — Dec 5 Fall 2018

4. Recall that a 5-coloring of a graph G is a function that assigns each vertex of G a “color” from
the set {0,1,2,3,4}, such that for any edge uv, vertices u and v are assigned different “colors”.
A 5-coloring is careful if the colors assigned to adjacent vertices are not only distinct, but differ
by more than 1 (mod 5). Prove that deciding whether a given graph has a careful 5-coloring is
NP-hard.

Solution: We prove that careful 5-coloring is NP-hard by reduction from the standard 5COLOR

problem.

Given a graph G, we construct a new graph H by replacing each edge in G with a path of
length three. I claim that H has a careful 5-coloring if and only if G has a (not necessarily careful)
5-coloring.

⇐= Suppose G has a 5-coloring. Consider a single edge uv in G, and suppose color(u) = a and
color(v) = b. We color the path from u to v in H as follows:

– If b = (a+ 1)mod 5, use colors (a, (a+ 2)mod 5, (a− 1) (mod 5), b).
– If b = (a− 1)mod 5, use colors (a, (a− 2)mod 5, (a+ 1) (mod 5), b).
– Otherwise, use colors (a, b, a, b).

In particular, every vertex in G retains its color in H. The resulting 5-coloring of H is careful.

=⇒ On the other hand, suppose H has a careful 5-coloring. Consider a path (u, x , y, v) in H
corresponding to an arbitrary edge uv in G. There are exactly eight careful colorings of
this path with color(u) = 0, namely: (0, 2, 0, 2), (0, 2, 0, 3), (0, 2, 4, 1), (0, 2, 4, 2), (0, 3, 0, 3),
(0, 3, 0, 2), (0, 3, 1, 3), (0, 3, 1, 4). It follows immediately that color(u) 6= color(v). Thus, if we
color each vertex of G with its color in H, we obtain a valid 5-coloring of G.

Given G, we can clearly construct H in polynomial time. �
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5. Prove that the following problem is NP-hard: Given an undirected graph G, find any integer k > 374
such that G has a proper coloring with k colors but G does not have a proper coloring with k−374
colors.

Solution: Let G′ be the union of 374 copies of G, with additional edges between every vertex of
each copy and every vertex in every other copy. Given G, we can easily build G′ in polynomial time
by brute force. Let χ(G) and χ(G′) denote the minimum number of colors in any proper coloring
of G, and define χ(G′) similarly.

=⇒ Fix any coloring of G with χ(G) colors. We can obtain a proper coloring of G′ with 374 ·χ(G)
colors, by using a distinct set of χ(G) colors in each copy of G. Thus, χ(G′)≤ 374 ·χ(G).

⇐= Now fix any coloring of G′ with χ(G′) colors. Each copy of G in G′ must use its own
distinct set of colors, so at least one copy of G uses at most bχ(G′)/374c colors. Thus,
χ(G)≤ bχ(G′)/374c.

These two observations immediately imply that χ(G′) = 374 ·χ(G). It follows that if k is an integer
such that k − 374 < χ(G′) ≤ k, then χ(G) = χ(G′)/374 = dk/374e. Thus, if we could compute
such an integer k in polyomial time, we could compute χ(G) in polynomial time. But computing
χ(G) is NP-hard! �
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6. A bicoloring of an undirected graph assigns each vertex a set of two colors. There are two types
of bicoloring: In a weak bicoloring, the endpoints of each edge must use different sets of colors;
however, these two sets may share one color. In a strong bicoloring, the endpoints of each edge
must use distinct sets of colors; that is, they must use four colors altogether. Every strong bicoloring
is also a weak bicoloring.

(a) Prove that finding the minimum number of colors in a weak bicoloring of a given graph is
NP-hard.

Solution: It suffices to prove that deciding whether a graph has a weak bicoloring with three
colors is NP-hard, using the following trivial reduction from the standard 3COLOR problem.

Let G be an arbitrary undirected graph. I claim that G has a proper 3-coloring if and only
if G has a weak bicoloring with 3 colors.

• Suppose G has a proper coloring using the colors red, green, and blue. We can obtain a
weak bicoloring of G using only the colors cyan, magenta, and yellow by recoloring each
red vertex with {magenta, yellow}, recoloring each blue vertex with {magenta, cyan},
and recoloring each green vertex with {yellow, cyan}.

• Suppose G has a weak bicoloring using the colors cyan, magenta, yellow. Then we
can obtain a proper 3-coloring of G by defining red = {magenta, yellow}, defining
blue= {magenta, cyan}, and defining green= {yellow, cyan}.

More generally, for any integer k and any graph G, every weak k-bicoloring of G is also a
proper
�k

2

�

-coloring of G, and vice versa. �
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(b) Prove that finding the minimum number of colors in a strong bicoloring of a given graph is
NP-hard.

Solution: It suffices to prove that deciding whether a graph has a strong bicoloring with six
colors is NP-hard, using the following reduction from the standard 3COLOR problem.

Let G be an arbitrary undirected graph. We build a new graph H from G as follows:

• For every vertex v in G, the graph H contains three vertices v1, v2, and v3 and three
edges v1v2, v2v3, and v3v1.

• For every edge uv in G, the graph H contains three edges u1v1, u2v2, and u3v3.

I claim that G has a proper 3-coloring if and only if H has a strong bicoloring with six colors.
Without loss of generality, we can assume that G (and therefore H) is connected; otherwise,
consider each component independently.

⇒ Suppose G has a proper 3-coloring with colors red, green, and blue. Then we define a
strong bicoloring of H with colors 1,2, 3,4, 5,6 as follows:

– For every red vertex v in G, let color(v1) = {1,2} and color(v1) = {3,4} and
color(v3) = {5, 6}.

– For every blue vertex v in G, let color(v1) = {3,4} and color(v1) = {5,6} and
color(v3) = {1, 2}.

– For every green vertex v in G, let color(v1) = {5,6} and color(v1) = {1,2} and
color(v3) = {3, 4}.

Exhaustive case analysis confirms that every pair of adjacent vertices of H has disjoint
color sets.

• Suppose H has a strong bicoloring with six colors. Fix an arbitrary vertex v in G,
and without loss of generality, suppose color(v1) = {1,2} and color(v1) = {3,4} and
color(v3) = {5, 6}. Exhaustive case analysis implies that for any edge uv, each vertex ui
must be colored either {1, 2} or {3, 4} or {5, 6}. It follows by induction that every vertex
in H must be colored either {1,2} or {3,4} or {5, 6}.

Now for each vertex w in G, color w red if color(w1) = {1, 2}, blue if color(w1) = {3, 4},
and green if color(w1) = {5,6}. This assignment of colors is a proper 3-coloring of G.

Given G, we can build H in polynomial time by brute force. �

I believe that deciding whether a graph has a strong bicoloring with five colors is also NP-hard,
but I don’t have a proof yet. A graph has a strong bicoloring with four colors if and only if it is
bipartite, and a strong bicoloring with two or three colors if and only if it has no edges.
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