
CS/ECE 374 Lab 3 — September 12 Fall 2018

1. Let L = {w ∈ {a, b}∗ | an a appears in some position i of w, and a b appears in position
i + 2}.

(a) Create an NFA N for L with at most four states.

Solution: The following NFA N accepts the language. The machine starts at state q0.
On seeing the symbol a, the NFA has the choice of either staying at q0 or to check if it
is followed, 2 positions later, with a b.

q0start q1 q2 q3
a

a, b

a, b b

a, b

�

(b) Using the “power-set” construction, create a DFA M from N . Rather than writing
down the sixteen states and trying to fill in the transitions, build the states as needed,
because you won’t end up with unreachable or otherwise superfluous states.

Solution: Using the “power-set” construction, we obtain the following DFA M .

{q0}start {q0, q1} {q0, q1, q2}

{q0, q2} {q0, q3}

{q0, q2, q3}

{q0, q1, q3}

{q0, q1, q2, q3}
a

b

a

ba

b a

b

a

b

ab
ab

a

b

�

(c) Now directly design a DFA M ′ for L with only five states, and explain the relationship
between M and M ′.

Solution: The DFA M ′ is as follows. M ′ remembers the last two symbols seen so far.

• q′0 is the start state. M ′

• q′1 corresponds to having seen ba as the last two symbols (or just a if this is the
first symbol).

• q′2 corresponds to having seen aa as the last two symbols.

1



CS/ECE 374 Lab 3 — September 12 Fall 2018

• q′3 is the accepting state.
• q′4 corresponds to having seen ab as the last two symbols.

q′0start q′1 q′2 q′3

q′4

a

b

a

b

b

a a, b

a

b

Note that if we contract all the accepting to states in M (from part (b)) to one
state, then we obtain M ′. �

2



CS/ECE 374 Lab 3 — September 12 Fall 2018

For the rest of the problems assume that L is an arbitrary regular language.

2. Prove that the language reverse(L) := {wR | w ∈ L} is regular. Hint: Consider a DFA M that
accepts L and construct a NFA that accepts reverse(L).

Solution: Let M = (Σ,Q, s, A,δ) be a DFA that accepts L. We construct an NFA M ′ =
(Σ,Q′, s′, A′,δ′) that accepts reverse(L) as follows.

Q′ :=Q ∪ {t} (here t is a new state not in Q)
s′ := t

A′ := {s}
δ′(t,ε) = A

∀q′ ∈Q, a ∈ Σ δ′(q′, a) = {q ∈Q | δ(q, a) = q′}

M ′ is obtained from M by reversing all the directions of the edges, adding a new state t
that becomes the new start state that is connected via ε edges to all the original accepting
states. There is a single accepting state in M ′ which is the start state of M . To see that
M ′ accepts reverse(L) you need to see that any accepting walk of M ′ corresponds to an an
accepting walk of M .

Another way to show that reverse(L) is regular is via regular expressions. For any
regular expression r you can construct a regular expression r ′ such that L(r ′) = reverse(L)
using the inductive definition of regular languages. We ignore the base cases as as exercise
and consuder the inductive cases.

• If r1 and r2 are regular expressions and r ′1 and r ′2 are regular expressions for the
reverse languages then the reverse for r1 + r2 is r ′1 + r ′2.

• For r1r2 we have r ′2r ′1.
• For (r1)∗ we have (r ′1)

∗.

�

3. Prove that the language insert1(L) := {x1y | x y ∈ L} is regular.
Intuitively, insert1(L) is the set of all strings that can be obtained from strings in L by insert-
ing exactly one 1. For example, if L = {ε,OOK!}, then insert1(L) = {1,1OOK!,O1OK!,
OO1K!,OOK1!,OOK!1}.

Solution: Let M = (Σ,Q, s, A,δ) be a DFA that accepts L. We construct an NFA M ′ =
(Σ,Q′, s′, A′,δ′) that accepts insert1(L) as follows:

Q′ :=Q× {before,after}
s′ := (s,before)

A′ :=
�

(q,after)
�

� q ∈ A
	

δ′((q,before), a) =

¨
�

(δ(q, a),before), (q,after)
	

if a = 1
�

(δ(q, a),before)
	

otherwise

δ′((q,after), a) =
�

(δ(q, a),after)
	

3



CS/ECE 374 Lab 3 — September 12 Fall 2018

M ′ nondeterministically chooses a 1 in the input string to ignore, and simulates M running
on the rest of the input string.

• The state (q,before) means (the simulation of) M is in state q and M ′ has not yet
skipped over a 1.

• The state (q,after) means (the simulation of) M is in state q and M ′ has already
skipped over a 1.

�

4



CS/ECE 374 Lab 3 — September 12 Fall 2018

4. Prove that the language delete1(L) := {x y | x1y ∈ L} is regular.

Intuitively, delete1(L) is the set of all strings that can be obtained from strings in L
by deleting exactly one 1. For example, if L = {101101,00,ε}, then delete1(L) =
{01101,10101,10110}.

Solution: Let M = (Σ,Q, s, A,δ) be a DFA that accepts L. We construct an NFA M ′ =
(Σ,Q′, s′, A′,δ′) with ε-transitions that accepts delete1(L) as follows:

Q′ :=Q× {before,after}
s′ := (s,before)

A′ :=
�

(q,after)
�

� q ∈ A
	

δ′((q,before),ε) =
�

(δ(q,1),after)
	

δ′((q,after),ε) =∅

δ′((q,before), a) =
�

(δ(q, a),before)
	

δ′((q,after), a) =
�

(δ(q, a),after)
	

M ′ simulates M , but inserts a single 1 into M ’s input string at a nondeterministically
chosen location.

• The state (q,before) means (the simulation of) M is in state q and M ′ has not yet
inserted a 1.

• The state (q,after) means (the simulation of) M is in state q and M ′ has already
inserted a 1.

�

5



CS/ECE 374 Lab 3 — September 12 Fall 2018

5. Consider the following recursively defined function on strings:

stutter(w) :=

¨

ε if w= ε
aa • stutter(x) if w= ax for some symbol a and some string x

Intuitively, stutter(w) doubles every symbol in w. For example:

• stutter(PRESTO) = PPRREESSTTOO

• stutter(HOCUS�POCUS) = HHOOCCUUSS��PPOOCCUUSS

Let L be an arbitrary regular language.

(a) Prove that the language stutter−1(L) := {w | stutter(w) ∈ L} is regular.

Solution: Let M = (Σ,Q, s, A,δ) be a DFA that accepts L.
We construct an DFA M ′ = (Σ,Q′, s′, A′,δ′) that accepts stutter−1(L) as follows:

Q′ =Q

s′ = s

A′ = A

δ′(q, a) = δ(δ(q, a), a)

M ′ reads its input string w and simulates M running on stutter(w). Each time M ′

reads a symbol, the simulation of M reads two copies of that symbol. �

6



CS/ECE 374 Lab 3 — September 12 Fall 2018

(b) Prove that the language stutter(L) := {stutter(w) | w ∈ L} is regular.

Solution: Let M = (Σ,Q, s, A,δ) be a DFA that accepts L.
We construct an DFA M ′ = (Σ,Q′, s′, A′,δ′) that accepts stutter(L) as follows:

Q′ =Q× ({•} ∪Σ)∪ {fail} for some • 6∈ Σ
s′ = (s,•)
A′ = {(q,•) | q ∈ A}

δ′((q,•), a) = (q, a)

δ′((q, a), b) =

¨

(δ(q, a),•) if a = b

fail if a 6= b

δ′(fail, a) = fail

M ′ reads the input string stutter(w) and simulates M running on input w.

• State (q,•) means M ′ has just read an even symbol in stutter(w), so M should
ignore the next symbol (if any).

• For any symbol a ∈ Σ, state (q, a) means M ′ has just read an odd symbol in
stutter(w), and that symbol was a. If the next symbol is an a, then M should
transition normally; otherwise, the simulation should fail.

• The state fail means M ′ has read two successive symbols that should have been
equal but were not; the input string is not stutter(w) for any string w.

�

7



CS/ECE 374 Lab 3 — September 12 Fall 2018

Solution (via regular expressions): Let R be an arbitrary regular expression. We
recursively construct a regular expression stutter(R) as follows:

stutter(R) :=



























∅ if R=∅
stutter(w) if R= w for some string w ∈ Σ∗

stutter(A) + stutter(B) if R= A+ B for some regular expressions A and B

stutter(A) stutter(B) if R= AB for some regular expressions A and B

(stutter(A))∗ if R= A∗ for some regular expression A

To prove that L(stutter(R)) = stutter(L(R)), we need the following identities for
arbitrary languages A and B:

• stutter(A∪ B) = stutter(A)∪ stutter(B)
• stutter(A• B) = stutter(A) • stutter(B)
• stutter(A∗) = stutter(A)∗

These identities can all be proved by inductive definition-chasing, after which the
claim L(stutter(R)) = stutter(L(R)) follows by induction. We leave the details of the
induction proofs as an exercise for a future semester an exam the reader.

Equivalently, we can directly transform R into stutter(R) by replacing every explicit
string w ∈ Σ∗ inside R with stutter(w) (with additional parentheses if necessary). For
example:

stutter
�

(1+ ε)(01)∗(0+ ε) +0∗
�

= (11+ ε)(0011)∗(00+ ε) + (00)∗

Although this may look simpler, actually proving that it works requires the same
induction arguments. �

8



CS/ECE 374 Lab 3 — September 12 Fall 2018

6. Consider the following recursively defined function on strings:

evens(w) :=











ε if w= ε
ε if w= a for some symbol a

b · evens(x) if w= abx for some symbols a and b and some string x

Intuitively, evens(w) skips over every other symbol in w. For example:

• evens(EXPELLIARMUS) = XELAMS

• evens(AVADA�KEDAVRA) = VD�EAR.

Once again, let L be an arbitrary regular language.

(a) Prove that the language evens−1(L) := {w | evens(w) ∈ L} is regular.

Solution: Let M = (Σ,Q, s, A,δ) be a DFA that accepts L. We construct an DFA
M ′ = (Σ,Q′, s′, A′,δ′) that accepts evens−1(L) as follows:

Q′ =Q× {0, 1}
s′ = (s, 0)

A′ = A× {0,1}

δ′((q, 0), a) = (q, 1)

δ′((q, 1), a) = (δ(q, a), 0)

M ′ reads its input string w and simulates M running on evens(w).

• State (q, 0) means M ′ has just read an even symbol in w, so M should ignore the
next symbol (if any).

• State (q, 1) means M ′ has just read an odd symbol in w, so M should read the
next symbol (if any).

�

9



CS/ECE 374 Lab 3 — September 12 Fall 2018

(b) Prove that the language evens(L) := {evens(w) | w ∈ L} is regular.

Solution: Let M = (Σ,Q, s, A,δ) be a DFA that accepts L. We construct an NFA
M ′ = (Σ,Q′, s′, A′,δ′) that accepts evens(L) as follows:

Q′ =Q

s′ = s

A′ = A∪
�

q ∈Q
�

� δ(q, a)∩ A 6=∅ for some a ∈ Σ
	

δ′(q, a) =
⋃

b∈Σ

�

δ
�

δ(q, b), a
�	

M ′ reads the input string evens(w) and simulates M running on string w, while
nondeterministically guessing the missing symbols in w.

• When M ′ reads the symbol a from evens(w), it guesses a symbol b ∈ Σ and
simulates M reading ba from w.

• When M ′ finishes evens(w), it guesses whether w has even or odd length, and in
the odd case, it guesses the last character of w.

�

10


