
CS/ECE 374 Lab 6 Solutions — October 3 Fall 2018

Here are several problems that are easy to solve in O(n) time, essentially by brute force. Your
task is to design algorithms for these problems that are significantly faster.

1. Suppose we are given an array A[1 .. n] of n distinct integers, which could be positive,
negative, or zero, sorted in increasing order so that A[1]< A[2]< · · ·< A[n].

(a) Describe a fast algorithm that either computes an index i such that A[i] = i or
correctly reports that no such index exists.

Solution: Suppose we define a second array B[1 .. n] by setting B[i] = A[i]− i for
all i. For every index i we have

B[i] = A[i]− i ≤ (A[i + 1]− 1)− i = A[i + 1]− (i + 1) = B[i + 1],

so this new array is sorted in increasing order. Clearly, A[i] = i if and only if B[i] = 0.
So we can find an index i such that A[i] = i by performing a binary search in B. We
don’t actually need to compute B in advance; instead, whenever the binary search
needs to access some value B[i], we can just compute A[i]− i on the fly instead!

Here are two formulations of the resulting algorithm, first recursive (keeping the
array A as a global variable), and second iterative.

〈〈Return any index i such that `≤ i ≤ r and A[i] = i〉〉
FindMatch(`, r):
if ` > r

return None
mid← (`+ r)/2
if A[mid] =mid 〈〈B[mid] = 0〉〉

return mid
else if A[mid]<mid 〈〈B[mid]< 0〉〉

return FindMatch(mid+ 1, r)
else 〈〈B[mid]> 0〉〉

return FindMatch(`,mid− 1)

FindMatch(A[1 .. n]):
hi← n
lo← 1
while lo≤ hi

mid← (lo+ hi)/2
if A[mid] =mid 〈〈B[mid] = 0〉〉

return mid
else if A[mid]<mid 〈〈B[mid]< 0〉〉

lo←mid+ 1
else 〈〈B[mid]> 0〉〉

hi←mid− 1
return None

In both formulations, the algorithm is binary search, so it runs in O(log n) time. �

1



CS/ECE 374 Lab 6 Solutions — October 3 Fall 2018

(b) Suppose we know in advance that A[1]> 0. Describe an even faster algorithm that
either computes an index i such that A[i] = i or correctly reports that no such index
exists. [Hint: This is really easy.]

Solution: The following algorithm solves this problem in O(1) time:

FindMatchPos(A[1 .. n]):
if A[1] = 1

return 1
else

return None

Again, the array B[1 .. n] defined by setting B[i] = A[i]− i is sorted in increasing
order. It follows that if A[1]> 1 (that is, B[1]> 0), then A[i]> i (that is, B[i]> 0)
for every index i. A[1] cannot be less than 1. �

2



CS/ECE 374 Lab 6 Solutions — October 3 Fall 2018

2. Suppose we are given an array A[1 .. n] such that A[1]≥ A[2] and A[n−1]≤ A[n]. We say
that an element A[x] is a local minimum if both A[x − 1] ≥ A[x] and A[x] ≤ A[x + 1].
For example, there are exactly six local minima in the following array:

9
Î
7 7 2

Î
1 3 7 5

Î
4 7

Î
3
Î
3 4 8

Î
6 9

Describe and analyze a fast algorithm that returns the index of one local minimum. For
example, given the array above, your algorithm could return the integer 9, because A[9] is
a local minimum. [Hint: With the given boundary conditions, any array must contain at
least one local minimum. Why?]

Solution: The following algorithm solves this problem in O(log n) time:

LocalMin(A[1 .. n]) :
if n< 100

find the smallest element in A by brute force
m← bn/2c
if A[m]< A[m+ 1]

return LocalMin(A[1 .. m+ 1])
else

return LocalMin(A[m .. n]))

If n is less than 100, then a brute-force search runs in O(1) time. There’s nothing special
about 100 here; any other constant will do.

Otherwise, if A[n/2] < A[n/2 + 1], the subarray A[1 .. n/2 + 1] satisfies the precise
boundary conditions of the original problem, so the recursion fairy will find local minimum
inside that subarray.

Finally, if A[n/2]> A[n/2+ 1], the subarray A[n/2 .. n] satisfies the precise boundary
conditions of the original problem, so the recursion fairy will find local minimum inside
that subarray.

The running time satisfies the recurrence T (n)≤ T (dn/2e+ 1) +O(1). Except for the
+1 and the ceiling in the recursive argument, which we can ignore, this is the binary search
recurrence, whose solution is T (n) = O(log n).

Alternatively, we can observe that dn/2e + 1 < 2n/3 when n ≥ 100, and therefore
T (n)≤ T (2n/3) +O(1), which implies T (n) = O(log3/2 n) = O(log n). �

3



CS/ECE 374 Lab 6 Solutions — October 3 Fall 2018

3. Suppose you are given two sorted arrays A[1 .. n] and B[1 .. n] containing distinct integers.
Describe a fast algorithm to find the median (meaning the nth smallest element) of the
union A∪ B. For example, given the input

A[1 .. 8] = [0, 1,6, 9,12, 13,18, 20] B[1 .. 8] = [2, 4,5, 8,17, 19,21, 23]

your algorithm should return the integer 9. [Hint: What can you learn by comparing one
element of A with one element of B?]

Solution: The following algorithm solves this problem in O(log n) time:

Median(A[1 .. n], B[1 .. n]) :
if n< 10100

use brute force
else if A[n/2]> B[n/2]

return Median(A[1 .. n/2], B[n/2+ 1 .. n])
else

return Median(A[n/2+ 1 .. n], B[1 .. n/2])

Suppose A[n/2]> B[n/2]. Then A[n/2+1] is larger than all n elements in A[1 .. n/2]∪
B[1 .. n/2], and therefore larger than the median of A∪ B, so we can discard the upper half
of A. Similarly, B[n/2−1] is smaller than all n+1 elements of A[n/2 .. n]∪ B[n/2+1 .. n],
and therefore smaller than the median of A∪ B, so we can discard the lower half of B.
Because we discard the same number of elements from each array, the median of the
remaining subarrays is the median of the original A∪ B. �

4



CS/ECE 374 Lab 6 Solutions — October 3 Fall 2018

4. Suppose you have an algorithm that given as input a directed graph G = (V, E), nodes
s, t ∈ V , and an integer k, outputs whether there is path from s to t in G with at most
k edges. Thus the algorithm is solving a decision problem. Now you want to use this
decision algorithm as a black box to find the length of the shortest path from s to t, which
is an optimization problem. How do you reduce the optimization problem to the decision
problem? What is an upper bound on the number of calls to the decision problem that
your optimization algorithm makes? Assume n is the number of nodes in G. Now suppose
the graphs has non-negative integer edge lengths with U being the largest edge length and
L ≥ 1 being the smallest edge length. Now how many calls will your algorithm take? Is it
polynomial in the input length?

Solution: This is a solution sketch. We will assume s 6= t otherwise the shortest path
length is 0. The shortest path length is then an integer in the range 1 to n− 1 since the
graph is unweighted. Binary search will require O(log n) calls to the decision problem.
A naive strategy of asking each value of k in the range requires n calls. If the graph is
weighted the shortest path length can be at most (n− 1)U and at least L. Hence binary
search will require O(log nU/L) calls which is at most O(log n+ log U) since L ≥ 1. Note
that writing U in binary take O(log U) bits so the number of calls is polynomial in the input
length. Note that if one uses naive strategy then the number of calls can be Ω(nU) which
is not necessarily polynomial in the input if U is very large, say 2n. �

To think about later:

5. Now suppose you are given two sorted arrays A[1 .. m] and B[1 .. n] and an integer k.
Describe a fast algorithm to find the kth smallest element in the union A∪ B. For example,
given the input

A[1 .. 8] = [0,1, 6,9, 12,13, 18,20] B[1 .. 5] = [2,5, 7,17, 19] k = 6

your algorithm should return the integer 7.

Solution: The following algorithm solves this problem in O(log min{k, m + n − k}) =
O(log(m+ n)) time:

Select(A[1 .. m], B[1 .. n], k) :
if k < (m+ n)/2

return Median(A[1 .. k], B[1 .. k])
else

return Median(A[k− n .. m], B[k−m .. n])

Here, Median is the algorithm from problem 3 with one minor tweak. If Median wants an
entry in either A or B that is outside the bounds of the original arrays, it uses the value −∞
if the index is too low, or∞ if the index is too high, instead of creating a core dump �

6. Suppose you have an algorithm that given as input a directed graph G = (V, E), nodes
s, t ∈ V , and an integer k, outputs whether the number of distinct shortest paths from s to
t is at least k. Describe an algorithm that counts the number of distinct shortest s-t paths
in G. Does your algorithm run in polynomial time?

5



CS/ECE 374 Lab 6 Solutions — October 3 Fall 2018

Solution: This is a solution sketch. We do binary search again but now we need to upper
bound the number of distinct shortest paths from s to t in G. It is not hard to construct
examples of graphs where the number is at least 2n/2 where n is the number of nodes. A
crude upper bound is mn where m is the number of edges and n is the number of nodes.
Why? Assuming this upper bound binary search will take O(m log n) calls and this is
polynomial in the input length. Note that writing down the answer may take O(m log n)
bits but that is also polynomial in the input length. �

6


