
CS/ECE 374 Lab 8½ Solutions — October 19 Fall 2018

1. A basic arithmetic expression is composed of characters from the set {1,+,×} and parenthe-
ses. Almost every integer can be represented by more than one basic arithmetic expression. For
example, all of the following basic arithmetic expression represent the integer 14:

1+ 1+ 1+ 1+ 1+ 1+ 1+ 1+ 1+ 1+ 1+ 1+ 1+ 1+ 1+ 1

((1+ 1)× (1+ 1+ 1+ 1+ 1)) + ((1+ 1)× (1+ 1))
(1+ 1)× (1+ 1+ 1+ 1+ 1+ 1+ 1)
(1+ 1)× (((1+ 1+ 1)× (1+ 1)) + 1)

Describe and analyze an algorithm to compute, given an integer n as input, the minimum number
of 1’s in a basic arithmetic expression whose value is equal to n. The number of parentheses
doesn’t matter, just the number of 1’s. For example, when n= 14, your algorithm should return 8,
for the final expression above. The running time of your algorithm should be bounded by a small
polynomial function of n.

Solution: LetMin1s(n) denote the minimum number of 1s in a basic arithmetic expression
with value n. This function obeys the following recurrence:

Min1s(n) =























1 if n= 1

min















min
�

Min1s(m) +Min1s(n−m)
�

� 1≤ m≤ n/2
	

min

¨

Min1s(m) +Min1s(n/m)

�

�

�

�

�

1≤ m≤
p

n and

n/m is an integer

«















otherwise

Here are the first twenty values of this function:

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
1 2 3 4 5 5 6 6 6 7 8 7 8 8 8 8 9 8 9 9

We can memoize this function into a one-dimensional array Min1s[1 .. n]. Each entry
Min1s[i] depends on all entries Min1s[j] with j < i, so we can fill the array in increasing
index order.

MinOnes(n):
Min1s[1]← 1
for i← 2 to n

Min1s[i]← i 〈〈Easy upper bound〉〉
for m← 1 to i/2

Min1s[i]←min
�

Min1s[i], Min1s[m] +Min1s[i −m]
	

if bi/mc ·m= i
Min1s[i]←min

�

Min1s[i], Min1s[m] +Min1s[i/m]
	

return Min1s[n]

The resulting algorithm runs in O(n2) time.

�

1

CS/ECE 374 Lab 8½ Solutions — October 19 Fall 2018

To think about later:

2. Suppose you are given a sequence of integers separated by + and − signs; for example:

1+ 3− 2− 5+ 1− 6+ 7

You can change the value of this expression by adding parentheses in different places. For
example:

1+ 3− 2− 5+ 1− 6+ 7= −1

(1+ 3− (2− 5)) + (1− 6) + 7= 9

(1+ (3− 2))− (5+ 1)− (6+ 7) = −17

Describe and analyze an algorithm to compute, given a list of integers separated by + and −
signs, the maximum possible value the expression can take by adding parentheses. Parentheses
must be used only to group additions and subtractions; in particular, do not use them to create
implicit multiplication as in 1+ 3(−2)(−5) + 1− 6+ 7= 33.

Solution: Suppose the input consists of an array X [0 .. 2n], where X [i] is an integer for
every even index i and X [i] ∈ {+,-} for every odd index i.

Let Max(i, k) and Min(i, k) respectively denote the maximum and minimum values
obtainable by parenthesizing the subexpression X [2i .. 2k]. We need to compute Max(0, n).
These functions obey the following mutual recurrences:

Max(i, k) =



































X [2i] if i = k

max























max

¨

Max(i, j) +Max(j + 1, k)

�

�

�

�

�

i ≤ j < k

X [2 j + 1] = +

«

max

¨

Max(i, j)−Min(j + 1, k)

�

�

�

�

�

i ≤ j < k

X [2 j + 1] = -

«























otherwise

Min(i, k) =



































X [2i] if i = k

min























max

¨

Min(i, j) +Min(j + 1, k)

�

�

�

�

�

i ≤ j < k

X [2 j + 1] = +

«

max

¨

Min(i, j)−Max(j + 1, k)

�

�

�

�

�

i ≤ j < k

X [2 j + 1] = -

«























otherwise

We can memoize each of these functions into a two-dimensional array. Each entry
Mxx[i, k] depends on earlier entries in the same row of the same array, and later entries
in the same column in both arrays. Thus, we can fill both arrays simultaneously, by
considering rows from bottom to top in the outer loop, and considering each row from left
to right in the inner loop.

The resulting algorithm (shown on the next page) runs in O(n3) time.

2

CS/ECE 374 Lab 8½ Solutions — October 19 Fall 2018

MaxValue(X [0 .. 2n]):
for i← n down to 0

Max[i, i]← X [2k]
Min[i, i]← X [2k]
for k← i + 1 to n

localMax←−∞
localMin←∞
for j← i to k− 1

if X [2 j + 1] = +
localMax←max{localMax, Max[i, j] +Max[j + 1, k]}
localMin←min{localMin, Min[i, j] +Min[j + 1, k]}

else
localMax←max{localMax, Max[i, j]−Min[j + 1, k]}
localMin←min{localMin, Min[i, j]−Max[j + 1, k]}

Max[i, k]← localMax
Min[i, k]← localMin

return Max[0, n]

�

3

