
CS/ECE 374: Algorithms & Models of

Computation

Nikita Borisov

University of Illinois, Urbana-Champaign

Fall 2018

Nikita Borisov (UIUC) CS/ECE 374 1 Fall 2018 1 / 33



CS/ECE 374: Algorithms & Models of

Computation, Fall 2018

Administrivia, Introduction
Lecture 1
August 28, 2018

Nikita Borisov (UIUC) CS/ECE 374 2 Fall 2018 2 / 33



Part I

Administrivia

Nikita Borisov (UIUC) CS/ECE 374 3 Fall 2018 3 / 33



Instructional Staff

1 Instructors: Chandra Chekuri (A section) and Nikita Borisov (B
section)

2 11 Teaching Assistants

3 ?? Undergraduate Course Assistants

4 Office hours: See course webpage

5 Contacting us: Use private notes on Piazza to reach course staff.
Direct email only for sensitive or confidential information.

Nikita Borisov (UIUC) CS/ECE 374 4 Fall 2018 4 / 33



Section A vs B

Only lectures different for the sections.

Home work, exams, labs etc will be common.

Homework groups can be across sections.

Nikita Borisov (UIUC) CS/ECE 374 5 Fall 2018 5 / 33



Online resources

1 Webpage: General information, announcements, homeworks,
course policies courses.engr.illinois.edu/cs374

2 Gradescope: Homework submission and grading, regrade
requests

3 Moodle: Quizzes, solutions to homeworks, grades

4 Piazza: Announcements, online questions and discussion,
contacting course staff (via private notes)

See course webpage for links

Important: check Piazza/course web page at least once each day

Nikita Borisov (UIUC) CS/ECE 374 6 Fall 2018 6 / 33

courses.engr.illinois.edu/cs374


Prereqs and Resources

1 Prerequisites: CS 173 (discrete math), CS 225 (data structures)
2 Recommended books: (not required)

1 Introduction to Theory of Computation by Sipser
2 Introduction to Automata, Languages and Computation by

Hopcroft, Motwani, Ullman
3 Algorithms by Dasgupta, Papadimitriou & Vazirani.

Available online for free!
4 Algorithm Design by Kleinberg & Tardos

3 Lecture notes/slides/pointers: available on course web-page
4 Additional References

1 Lecture notes of Jeff Erickson, Sariel HarPeled, Mahesh
Viswanathan and others

2 Introduction to Algorithms: Cormen, Leiserson, Rivest, Stein.
3 Computers and Intractability: Garey and Johnson.

Nikita Borisov (UIUC) CS/ECE 374 7 Fall 2018 7 / 33



Grading Policy: Overview

1 Quizzes: 0% for self-study

2 Homeworks: 24%

3 Midterm exams: 44% (2 × 22%)

4 Final exam: 32% (covers the full course content)

Midterm exam dates:

1 Midterm 1: Mon, October 1, 7–9.30pm

2 Midterm 2: Mon, November 12, 7–9.30pm

No conflict exam offered unless you have a valid excuse.

Nikita Borisov (UIUC) CS/ECE 374 8 Fall 2018 8 / 33



Homeworks

1 Self-study quizzes each week on Moodle. No credit but stronlgy
recommended.

2 One homework every week: Due on Wednesdays at 10am on
Gradescope. Assigned at least a week in advance.

3 Homeworks can be worked on in groups of up to 3 and each
group submits one written solution (except Homework 0).

4 Important: academic integrity policies. See course web page.

Nikita Borisov (UIUC) CS/ECE 374 9 Fall 2018 9 / 33



More on Homeworks

1 No extensions or late homeworks accepted.

2 To compensate, nine problems will be dropped. Homeworks
typically have three problems each.

3 Important: Read homework faq/instructions on website.

Nikita Borisov (UIUC) CS/ECE 374 10 Fall 2018 10 / 33



Discussion Sessions/Labs

1 50min problem solving session led by TAs

2 Two times a week

3 Go to your assigned discussion section

4 Bring pen and paper!

Nikita Borisov (UIUC) CS/ECE 374 11 Fall 2018 11 / 33



Advice

1 Attend lectures, please ask plenty of questions.

2 Attend discussion sessions.

3 Don’t skip homework and don’t copy homework solutions. Each
of you should think about all the problems on the home work -
do not divide and conquer.

4 Use pen and paper since that is what you will do in exams which
count for 76% of the grade. Keep a note book.

5 Study regularly and keep up with the course.

6 This is a course on problem solving. Solve as many as you can!
Books/notes have plenty.

7 This is also a course on providing rigourous proofs of
correctness. Refresh your 173 background on proofs.

8 Ask for help promptly. Make use of office hours/Piazza.

Nikita Borisov (UIUC) CS/ECE 374 12 Fall 2018 12 / 33



Homework 0

1 HW 0 is posted on the class website. Quiz 0 available on
Moodle.

2 HW 0 due on Wednesady September 5th at 10am on Gradescope

3 HW 0 to be done and submitted individually.

Nikita Borisov (UIUC) CS/ECE 374 13 Fall 2018 13 / 33



Miscellaneous

Please contact instructors if you need special accommodations.

Lectures are being taped. See course webpage.

Nikita Borisov (UIUC) CS/ECE 374 14 Fall 2018 14 / 33



Part II

Course Goals and Overview

Nikita Borisov (UIUC) CS/ECE 374 15 Fall 2018 15 / 33



High-Level Questions

1 Computation, formally.
1 Is there a formal definition of a computer?
2 Is there a “universal” computer?

2 Algorithms
1 What is an algorithm?
2 What is an efficient algorithm?
3 Some fundamental algorithms for basic problems
4 Broadly applicable techniques in algorithm design

3 Limits of computation.
1 Are there tasks that our computers cannot do?
2 How do we prove lower bounds?
3 Some canonical hard problems.

Nikita Borisov (UIUC) CS/ECE 374 16 Fall 2018 16 / 33



Course Structure

Course divided into three parts:

1 Basic automata theory: finite state machines, regular languages,
hint of context free languages/grammars, Turing Machines

2 Algorithms and algorithm design techniques

3 Undecidability and NP-Completeness, reductions to prove
intractability of problems

Nikita Borisov (UIUC) CS/ECE 374 17 Fall 2018 17 / 33



Goals

1 Algorithmic thinking
2 Learn/remember some basic tricks, algorithms, problems, ideas

3 Understand/appreciate limits of computation (intractability)

4 Appreciate the importance of algorithms in computer science
and beyond (engineering, mathematics, natural sciences, social
sciences, ...)

Nikita Borisov (UIUC) CS/ECE 374 18 Fall 2018 18 / 33



History

Muhammad ibn Musa al-Khwarizmi (c.780–c.850)

Nikita Borisov (UIUC) CS/ECE 374 19 Fall 2018 19 / 33



History

Muhammad ibn Musa al-Khwarizmi (c.780–c.850)

Nikita Borisov (UIUC) CS/ECE 374 19 Fall 2018 19 / 33



Text on Algebra

Nikita Borisov (UIUC) CS/ECE 374 20 Fall 2018 20 / 33



Algorithm Description

If some one says: “You divide ten into two parts: multiply
the one by itself; it will be equal to the other taken eighty-one
times.” Computation: You say, ten less a thing, multiplied
by itself, is a hundred plus a square less twenty things, and
this is equal to eighty-one things. Separate the twenty things
from a hundred and a square, and add them to eighty-one.
It will then be a hundred plus a square, which is equal to a
hundred and one roots.

(10 − x)2 = 81x

x2 − 20x + 100 = 81x

x2 + 100 = 101x

Nikita Borisov (UIUC) CS/ECE 374 21 Fall 2018 21 / 33



Algorithm Description

If some one says: “You divide ten into two parts: multiply
the one by itself; it will be equal to the other taken eighty-one
times.” Computation: You say, ten less a thing, multiplied
by itself, is a hundred plus a square less twenty things, and
this is equal to eighty-one things. Separate the twenty things
from a hundred and a square, and add them to eighty-one.
It will then be a hundred plus a square, which is equal to a
hundred and one roots.

(10 − x)2 = 81x

x2 − 20x + 100 = 81x

x2 + 100 = 101x

Nikita Borisov (UIUC) CS/ECE 374 21 Fall 2018 21 / 33



Models of Computation vs Computers

1 Model of Computation: an “idealized mathematical construct”
that describes the primitive instructions and other details

2 Computer: an actual “physical device” that implements a very
specific model of computation

Nikita Borisov (UIUC) CS/ECE 374 22 Fall 2018 22 / 33



First Computer

Babbage’s analytical engine—designed in 1837, never built.
Nikita Borisov (UIUC) CS/ECE 374 23 Fall 2018 23 / 33



First Program

Ada Lovelace’s “Note G” describing how to calculate Bernouilli
numbers using the analytical engine.

Nikita Borisov (UIUC) CS/ECE 374 24 Fall 2018 24 / 33



First Bug!

Ada Lovelace’s “Note G” describing how to calculate Bernouilli
numbers using the analytical engine.
This version contains a bug!

Nikita Borisov (UIUC) CS/ECE 374 25 Fall 2018 25 / 33



Models of Computation vs. Computers

Models and devices:

1 Algorithms: usually at a high level in a model

2 Device construction: usually at a low level

3 Intermediaries: compilers

4 How precise? Depends on the problem!

5 Physics helps implement a model of computer

6 Physics also inspires models of computation

Nikita Borisov (UIUC) CS/ECE 374 26 Fall 2018 26 / 33



Adding Numbers

Problem Given two n-digit numbers x and y , compute their sum.

Basic addition

3141

+7798

10939

Nikita Borisov (UIUC) CS/ECE 374 27 Fall 2018 27 / 33



Adding Numbers

c = 0
for i = 1 to n do

z = xi + yi
z = z + c
If (z > 10)

c = 1
z = z − 10 (equivalently the last digit of z)

Else c = 0
print z

End For

If (c == 1) print c

1 Primitive instruction is addition of two digits

2 Algorithm requires O(n) primitive instructions

Nikita Borisov (UIUC) CS/ECE 374 28 Fall 2018 28 / 33



Adding Numbers

c = 0
for i = 1 to n do

z = xi + yi
z = z + c
If (z > 10)

c = 1
z = z − 10 (equivalently the last digit of z)

Else c = 0
print z

End For

If (c == 1) print c

1 Primitive instruction is addition of two digits

2 Algorithm requires O(n) primitive instructions

Nikita Borisov (UIUC) CS/ECE 374 28 Fall 2018 28 / 33



Multiplying Numbers

Problem Given two n-digit numbers x and y , compute their
product.

Grade School Multiplication
Compute “partial product” by multiplying each digit of y with x and
adding the partial products.

3141

× 2718

25128

3141

21987

6282

8537238

Nikita Borisov (UIUC) CS/ECE 374 29 Fall 2018 29 / 33



Time analysis of grade school multiplication

1 Each partial product: Θ(n) time

2 Number of partial products: ≤ n
3 Adding partial products: n additions each Θ(n) (Why?)

4 Total time: Θ(n2)

5 Is there a faster way?

Nikita Borisov (UIUC) CS/ECE 374 30 Fall 2018 30 / 33



Fast Multiplication

Best known algorithm: O
(
n log n · 4log∗ n

)
by Harvey and van der

Hoeven, published in 2018!
Conjecture: there exists an O(n log n) time algorithm

We don’t fully understand multiplication!
Computation and algorithm design is non-trivial!

Nikita Borisov (UIUC) CS/ECE 374 31 Fall 2018 31 / 33



Fast Multiplication

Best known algorithm: O
(
n log n · 4log∗ n

)
by Harvey and van der

Hoeven, published in 2018!
Conjecture: there exists an O(n log n) time algorithm

We don’t fully understand multiplication!
Computation and algorithm design is non-trivial!

Nikita Borisov (UIUC) CS/ECE 374 31 Fall 2018 31 / 33



Aside about O-notation

Some previous versions of multiplication are still widely used:

Karatsuba algorithm O(nlog2 3) [1962]

Schönhage-Strassen (FFT) O(n log n log log n) [1971]

Why?

Fürer’s algorithm (2007) O(n2O(log∗ n))
. . . beats Schönhage-Strassen for numbers greater than 2264

.

Nikita Borisov (UIUC) CS/ECE 374 32 Fall 2018 32 / 33



Aside about O-notation

Some previous versions of multiplication are still widely used:

Karatsuba algorithm O(nlog2 3) [1962]

Schönhage-Strassen (FFT) O(n log n log log n) [1971]

Why? Fürer’s algorithm (2007) O(n2O(log∗ n))

. . . beats Schönhage-Strassen for numbers greater than 2264
.

Nikita Borisov (UIUC) CS/ECE 374 32 Fall 2018 32 / 33



Aside about O-notation

Some previous versions of multiplication are still widely used:

Karatsuba algorithm O(nlog2 3) [1962]

Schönhage-Strassen (FFT) O(n log n log log n) [1971]

Why? Fürer’s algorithm (2007) O(n2O(log∗ n))
. . . beats Schönhage-Strassen for numbers greater than 2264

.

Nikita Borisov (UIUC) CS/ECE 374 32 Fall 2018 32 / 33



Halting Problem

Debugging problem: Given a program M and string x , does M
halt when started on input x?

Simpler problem: Given a program M , does M halt when it is
started? Equivalently, will it print “Hello World”?

One can prove that there is no algorithm for the above two problems!

Nikita Borisov (UIUC) CS/ECE 374 33 Fall 2018 33 / 33



Halting Problem

Debugging problem: Given a program M and string x , does M
halt when started on input x?

Simpler problem: Given a program M , does M halt when it is
started? Equivalently, will it print “Hello World”?

One can prove that there is no algorithm for the above two problems!

Nikita Borisov (UIUC) CS/ECE 374 33 Fall 2018 33 / 33



Halting Problem

Debugging problem: Given a program M and string x , does M
halt when started on input x?

Simpler problem: Given a program M , does M halt when it is
started? Equivalently, will it print “Hello World”?

One can prove that there is no algorithm for the above two problems!

Nikita Borisov (UIUC) CS/ECE 374 33 Fall 2018 33 / 33


	Administrivia
	Course Goals and Overview
	Addition and Multiplication


