CS/ECE 374: Algorithms & Models of Computation, Fall 2018

Regular Languages and Expressions

Lecture 2 August 30, 2018

Part I

Regular Languages

A class of simple but very useful languages. The set of regular languages over some alphabet $\pmb{\Sigma}$ is defined inductively as:

• Ø is a regular language

A class of simple but very useful languages. The set of regular languages over some alphabet $\pmb{\Sigma}$ is defined inductively as:

- Ø is a regular language
- $\{\epsilon\}$ is a regular language

A class of simple but very useful languages. The set of regular languages over some alphabet Σ is defined inductively as:

- Ø is a regular language
- $\{\epsilon\}$ is a regular language
- {a} is a regular language for each a ∈ Σ; here we are interpreting a as a string of length 1

A class of simple but very useful languages. The set of regular languages over some alphabet Σ is defined inductively as:

- Ø is a regular language
- $\{\epsilon\}$ is a regular language
- {a} is a regular language for each a ∈ Σ; here we are interpreting a as a string of length 1
- If L_1, L_2 are regular then $L_1 \cup L_2$ is regular

A class of simple but very useful languages. The set of regular languages over some alphabet Σ is defined inductively as:

- Ø is a regular language
- $\{\epsilon\}$ is a regular language
- {a} is a regular language for each a ∈ Σ; here we are interpreting a as a string of length 1
- If L_1, L_2 are regular then $L_1 \cup L_2$ is regular
- If L_1, L_2 are regular then L_1L_2 is regular

A class of simple but very useful languages. The set of regular languages over some alphabet Σ is defined inductively as:

- Ø is a regular language
- $\{\epsilon\}$ is a regular language
- {a} is a regular language for each a ∈ Σ; here we are interpreting a as a string of length 1
- If L_1, L_2 are regular then $L_1 \cup L_2$ is regular
- If L_1, L_2 are regular then L_1L_2 is regular
- If *L* is regular, then $L^* = \bigcup_{n \ge 0} L^n$ is regular

A class of simple but very useful languages. The set of regular languages over some alphabet Σ is defined inductively as:

- Ø is a regular language
- $\{\epsilon\}$ is a regular language
- {a} is a regular language for each a ∈ Σ; here we are interpreting a as a string of length 1
- If L_1, L_2 are regular then $L_1 \cup L_2$ is regular
- If L_1, L_2 are regular then L_1L_2 is regular
- If *L* is regular, then $L^* = \bigcup_{n \ge 0} L^n$ is regular

A class of simple but very useful languages. The set of regular languages over some alphabet Σ is defined inductively as:

- Ø is a regular language
- $\{\epsilon\}$ is a regular language
- {a} is a regular language for each a ∈ Σ; here we are interpreting a as a string of length 1
- If L_1, L_2 are regular then $L_1 \cup L_2$ is regular
- If L_1, L_2 are regular then L_1L_2 is regular
- If *L* is regular, then $L^* = \bigcup_{n \ge 0} L^n$ is regular

Regular languages are closed under the operations of union, concatenation and Kleene star.

Some simple regular languages

Lemma

If w is a string then $L = \{w\}$ is regular.

Example: {aba} or {abbabbab}. Why?

Some simple regular languages

Lemma

If w is a string then $L = \{w\}$ is regular.

Example: {aba} or {abbabbab}. Why?

Lemma

Every finite language L is regular.

Examples: $L = \{a, abaab, aba\}$. $L = \{w \mid |w| \le 100\}$. Why?

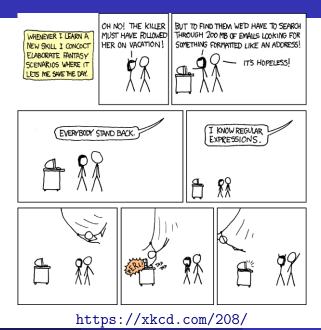
More Examples

- $\{w \mid w \text{ is a keyword in Python program}\}$
- {w | w is a valid date of the form mm/dd/yy}
- {w | w describes a valid Roman numeral} {I, II, III, IV, V, VI, VII, VIII, IX, X, XI, ...}.
- {w | w contains "CS374" as a substring}.

Part II

Regular Expressions

xkcd



Nikita Borisov (UIUC)

CS/ECE 374

Regular Expressions

A way to denote regular languages

- simple patterns to describe related strings
- useful in
 - text search (editors, Unix/grep, emacs)
 - compilers: lexical analysis
 - compact way to represent interesting/useful languages
 - dates back to 50's: Stephen Kleene who has a star named after him.

Inductive Definition

A regular expression **r** over an alphabhe Σ is one of the following: Base cases:

- \emptyset denotes the language \emptyset
- ϵ denotes the language $\{\epsilon\}$.
- a denote the language {a}.

A regular expression **r** over an alphabhe Σ is one of the following: Base cases:

- Ø denotes the language Ø
- ϵ denotes the language $\{\epsilon\}$.
- a denote the language {a}.

Inductive cases: If r_1 and r_2 are regular expressions denoting languages R_1 and R_2 respectively then,

- $(\mathbf{r}_1 + \mathbf{r}_2)$ denotes the language $R_1 \cup R_2$
- (r_1r_2) denotes the language R_1R_2
- $(\mathbf{r}_1)^*$ denotes the language R_1^*

Regular Languages vs Regular Expressions

Regular Languages

 \emptyset regular $\{\epsilon\}$ regular $\{a\}$ regular for $a \in \Sigma$ $R_1 \cup R_2$ regular if both are R_1R_2 regular if both are R^* is regular if R is **Regular Expressions**

 \emptyset denotes \emptyset ϵ denotes $\{\epsilon\}$ a denote $\{a\}$ $\mathbf{r}_1 + \mathbf{r}_2$ denotes $R_1 \cup R_2$ $\mathbf{r}_1\mathbf{r}_2$ denotes R_1R_2 \mathbf{r}^* denote R^*

Regular expressions denote regular languages — they explicitly show the operations that were used to form the language

 For a regular expression r, L(r) is the language denoted by r. Multiple regular expressions can denote the same language!
 Example: (0 + 1) and (1 + 0) denote same language {0, 1}

- For a regular expression r, L(r) is the language denoted by r. Multiple regular expressions can denote the same language!
 Example: (0 + 1) and (1 + 0) denote same language {0, 1}
- Two regular expressions r_1 and r_2 are equivalent if $L(r_1) = L(r_2)$.

- For a regular expression r, L(r) is the language denoted by r. Multiple regular expressions can denote the same language!
 Example: (0 + 1) and (1 + 0) denote same language {0,1}
- Two regular expressions r_1 and r_2 are equivalent if $L(r_1) = L(r_2)$.
- Omit parenthesis by adopting precedence order: *, concat, +.
 Example: rs* + t = (r(s*)) + t

- For a regular expression r, L(r) is the language denoted by r. Multiple regular expressions can denote the same language!
 Example: (0 + 1) and (1 + 0) denote same language {0,1}
- Two regular expressions r_1 and r_2 are equivalent if $L(r_1) = L(r_2)$.
- Omit parenthesis by adopting precedence order: *, concat, +.
 Example: rs* + t = (r(s*)) + t
- Omit parenthesis by associativity of each of these operations.
 Example: rst = (rs)t = r(st),
 r + s + t = r + (s + t) = (r + s) + t.

- For a regular expression r, L(r) is the language denoted by r. Multiple regular expressions can denote the same language!
 Example: (0 + 1) and (1 + 0) denote same language {0, 1}
- Two regular expressions r_1 and r_2 are equivalent if $L(r_1) = L(r_2)$.
- Omit parenthesis by adopting precedence order: *, concat, +.
 Example: rs* + t = (r(s*)) + t
- Omit parenthesis by associativity of each of these operations.
 Example: rst = (rs)t = r(st),
 r + s + t = r + (s + t) = (r + s) + t.
- Superscript +. For convenience, define $r^+ = rr^*$. Hence if L(r) = R then $L(r^+) = R^+$.

- For a regular expression r, L(r) is the language denoted by r. Multiple regular expressions can denote the same language!
 Example: (0 + 1) and (1 + 0) denote same language {0,1}
- Two regular expressions r_1 and r_2 are equivalent if $L(r_1) = L(r_2)$.
- Omit parenthesis by adopting precedence order: *, concat, +.
 Example: rs* + t = (r(s*)) + t
- Omit parenthesis by associativity of each of these operations.
 Example: rst = (rs)t = r(st),
 r + s + t = r + (s + t) = (r + s) + t.
- Superscript +. For convenience, define $\mathbf{r}^+ = \mathbf{r}\mathbf{r}^*$. Hence if $L(\mathbf{r}) = R$ then $L(\mathbf{r}^+) = R^+$.
- Other notation: r + s, r ∪ s, r | s all denote union. rs is sometimes written as r s.

• Given a language *L* "in mind" (say an English description) we would like to write a regular expression for *L* (if possible)

Skills

- Given a language *L* "in mind" (say an English description) we would like to write a regular expression for *L* (if possible)
- Given a regular expression r we would like to "understand" L(r) (say by giving an English description)

• (0 + 1)*: set of all strings over {0,1}

(0 + 1)*: set of all strings over {0, 1}
(0 + 1)*001(0 + 1)*:

- (0 + 1)*: set of all strings over {0, 1}
- $(0 + 1)^* 001(0 + 1)^*$: strings with 001 as substring

- (0 + 1)*: set of all strings over {0,1}
- $(0 + 1)^* 001(0 + 1)^*$: strings with 001 as substring
- 0* + (0*10*10*10*)*:

- (0 + 1)*: set of all strings over {0,1}
- (0 + 1)*001(0 + 1)*: strings with 001 as substring
- 0* + (0*10*10*10*)*: strings with number of 1's divisible by 3

- (0 + 1)*: set of all strings over {0,1}
- $(0 + 1)^* 001(0 + 1)^*$: strings with 001 as substring
- 0* + (0*10*10*10*)*: strings with number of 1's divisible by 3
- Ø0:

- (0 + 1)*: set of all strings over {0,1}
- $(0 + 1)^* 001(0 + 1)^*$: strings with 001 as substring
- 0* + (0*10*10*10*)*: strings with number of 1's divisible by 3
- ØO: {}

- (0 + 1)*: set of all strings over {0,1}
- $(0 + 1)^* 001(0 + 1)^*$: strings with 001 as substring
- 0* + (0*10*10*10*)*: strings with number of 1's divisible by 3
- ØO: {}
- $(\epsilon + 1)(01)^*(\epsilon + 0)$:

- (0 + 1)*: set of all strings over {0,1}
- $(0 + 1)^* 001(0 + 1)^*$: strings with 001 as substring
- 0* + (0*10*10*10*)*: strings with number of 1's divisible by 3
- ØO: {}
- (ε + 1)(01)*(ε + 0): alteranting 0s and 1s. Alternatively, no two consecutive 0s and no two consecutive 1s

Understanding regular expressions

- (0 + 1)*: set of all strings over {0,1}
- $(0 + 1)^* 001(0 + 1)^*$: strings with 001 as substring
- 0* + (0*10*10*10*)*: strings with number of 1's divisible by 3
- ØO: {}
- (ε + 1)(01)*(ε + 0): alteranting 0s and 1s. Alternatively, no two consecutive 0s and no two consecutive 1s
- (ϵ + 0)(1 + 10)*:

Understanding regular expressions

- (0 + 1)*: set of all strings over {0,1}
- $(0 + 1)^* 001(0 + 1)^*$: strings with 001 as substring
- 0* + (0*10*10*10*)*: strings with number of 1's divisible by 3
- ØO: {}
- (ε + 1)(01)*(ε + 0): alteranting 0s and 1s. Alternatively, no two consecutive 0s and no two consecutive 1s
- $(\epsilon + 0)(1 + 10)^*$: strings without two consecutive 0s.

• bitstrings with the pattern **001** or the pattern **100** ocurring as a substring

• bitstrings with the pattern 001 or the pattern 100 ocurring as a substring one answer: (0 + 1)*001(0 + 1)* + (0 + 1)*100(0 + 1)*

- bitstrings with the pattern 001 or the pattern 100 ocurring as a substring one answer: (0 + 1)*001(0 + 1)* + (0 + 1)*100(0 + 1)*
- bitstrings with an even number of 1's

- bitstrings with the pattern 001 or the pattern 100 ocurring as a substring one answer: (0 + 1)*001(0 + 1)* + (0 + 1)*100(0 + 1)*
- bitstrings with an even number of 1's one answer: 0* + (0*10*10*)*

- bitstrings with the pattern 001 or the pattern 100 ocurring as a substring one answer: (0 + 1)*001(0 + 1)* + (0 + 1)*100(0 + 1)*
- bitstrings with an even number of 1's one answer: 0* + (0*10*10*)*
- $\bullet\,$ bitstrings with an odd number of $1\mbox{'s}$

- bitstrings with the pattern 001 or the pattern 100 ocurring as a substring one answer: (0 + 1)*001(0 + 1)* + (0 + 1)*100(0 + 1)*
- bitstrings with an even number of 1's one answer: 0* + (0*10*10*)*
- bitstrings with an odd number of 1's one answer: 0*1r where r is solution to previous part

- bitstrings with the pattern 001 or the pattern 100 ocurring as a substring one answer: (0 + 1)*001(0 + 1)* + (0 + 1)*100(0 + 1)*
- bitstrings with an even number of 1's one answer: 0* + (0*10*10*)*
- bitstrings with an odd number of 1's one answer: 0*1r where r is solution to previous part
- bitstrings that do not contain **011** as a substring

- bitstrings with the pattern 001 or the pattern 100 ocurring as a substring one answer: (0 + 1)*001(0 + 1)* + (0 + 1)*100(0 + 1)*
- bitstrings with an even number of 1's one answer: 0* + (0*10*10*)*
- bitstrings with an odd number of 1's one answer: 0*1r where r is solution to previous part
- bitstrings that do not contain 011 as a substring one answer: 0*(10⁺)*(1 + ε) (1*0⁺ + 0*)(10⁺)*(1 + ε)

- bitstrings with the pattern 001 or the pattern 100 ocurring as a substring one answer: (0 + 1)*001(0 + 1)* + (0 + 1)*100(0 + 1)*
- bitstrings with an even number of 1's one answer: 0* + (0*10*10*)*
- bitstrings with an odd number of 1's one answer: 0*1r where r is solution to previous part
- bitstrings that do not contain 011 as a substring one answer: 0*(10⁺)*(1 + ε) (1*0⁺ + 0*)(10⁺)*(1 + ε)
- Hard: bitstrings with an odd number of 1s and an odd number of 0s.

- r*r* = r* meaning for any regular expression r, L(r*r*) = L(r*)
- $(r^*)^* = r^*$
- $rr^* = r^*r$
- $(rs)^*r = r(sr)^*$
- $(r+s)^* = (r^*s^*)^* = (r^*+s^*)^* = (r+s^*)^* = \dots$

- r*r* = r* meaning for any regular expression r, L(r*r*) = L(r*)
- $(r^*)^* = r^*$
- $rr^* = r^*r$
- $(rs)^*r = r(sr)^*$
- $(r+s)^* = (r^*s^*)^* = (r^*+s^*)^* = (r+s^*)^* = \dots$

Question: How does on prove an identity?

- r*r* = r* meaning for any regular expression r, L(r*r*) = L(r*)
- $(r^*)^* = r^*$
- $rr^* = r^*r$
- $(rs)^*r = r(sr)^*$
- $(r+s)^* = (r^*s^*)^* = (r^*+s^*)^* = (r+s^*)^* = \dots$

Question: How does on prove an identity? By induction. On what?

- r*r* = r* meaning for any regular expression r, L(r*r*) = L(r*)
- $(r^*)^* = r^*$
- $rr^* = r^*r$
- $(rs)^*r = r(sr)^*$
- $(r+s)^* = (r^*s^*)^* = (r^*+s^*)^* = (r+s^*)^* = \dots$

Question: How does on prove an identity? By induction. On what? Length of r since r is a string obtained from specific inductive rules.

Consider $L = \{0^n 1^n \mid n \ge 0\} = \{\epsilon, 01, 0011, 000111, \ldots\}.$

Consider $L = \{0^n 1^n \mid n \ge 0\} = \{\epsilon, 01, 0011, 000111, \ldots\}.$

Theorem

L is not a regular language.

Consider $L = \{0^n 1^n \mid n \ge 0\} = \{\epsilon, 01, 0011, 000111, \ldots\}.$

Theorem

L is not a regular language.

How do we prove it?

Consider $L = \{0^n 1^n \mid n \ge 0\} = \{\epsilon, 01, 0011, 000111, \ldots\}.$

Theorem

L is not a regular language.

How do we prove it?

Other questions:

- Suppose R_1 is regular and R_2 is regular. Is $R_1 \cap R_2$ regular?
- Suppose R_1 is regular is \overline{R}_1 (complement of R_1) regular?