
CS/ECE 374: Algorithms & Models of

Computation, Fall 2018

Regular Languages and
Expressions
Lecture 2
August 30, 2018

Nikita Borisov (UIUC) CS/ECE 374 1 Fall 2018 1 / 16

Part I

Regular Languages

Nikita Borisov (UIUC) CS/ECE 374 2 Fall 2018 2 / 16

Regular Languages

A class of simple but very useful languages.
The set of regular languages over some alphabet Σ is defined
inductively as:

∅ is a regular language

{ε} is a regular language

{a} is a regular language for each a ∈ Σ; here we are
interpreting a as a string of length 1

If L1, L2 are regular then L1 ∪ L2 is regular

If L1, L2 are regular then L1L2 is regular

If L is regular, then L∗ = ∪n≥0Ln is regular

Regular languages are closed under the operations of union,
concatenation and Kleene star.

Nikita Borisov (UIUC) CS/ECE 374 3 Fall 2018 3 / 16

Regular Languages

A class of simple but very useful languages.
The set of regular languages over some alphabet Σ is defined
inductively as:

∅ is a regular language

{ε} is a regular language

{a} is a regular language for each a ∈ Σ; here we are
interpreting a as a string of length 1

If L1, L2 are regular then L1 ∪ L2 is regular

If L1, L2 are regular then L1L2 is regular

If L is regular, then L∗ = ∪n≥0Ln is regular

Regular languages are closed under the operations of union,
concatenation and Kleene star.

Nikita Borisov (UIUC) CS/ECE 374 3 Fall 2018 3 / 16

Regular Languages

A class of simple but very useful languages.
The set of regular languages over some alphabet Σ is defined
inductively as:

∅ is a regular language

{ε} is a regular language

{a} is a regular language for each a ∈ Σ; here we are
interpreting a as a string of length 1

If L1, L2 are regular then L1 ∪ L2 is regular

If L1, L2 are regular then L1L2 is regular

If L is regular, then L∗ = ∪n≥0Ln is regular

Regular languages are closed under the operations of union,
concatenation and Kleene star.

Nikita Borisov (UIUC) CS/ECE 374 3 Fall 2018 3 / 16

Regular Languages

A class of simple but very useful languages.
The set of regular languages over some alphabet Σ is defined
inductively as:

∅ is a regular language

{ε} is a regular language

{a} is a regular language for each a ∈ Σ; here we are
interpreting a as a string of length 1

If L1, L2 are regular then L1 ∪ L2 is regular

If L1, L2 are regular then L1L2 is regular

If L is regular, then L∗ = ∪n≥0Ln is regular

Regular languages are closed under the operations of union,
concatenation and Kleene star.

Nikita Borisov (UIUC) CS/ECE 374 3 Fall 2018 3 / 16

Regular Languages

A class of simple but very useful languages.
The set of regular languages over some alphabet Σ is defined
inductively as:

∅ is a regular language

{ε} is a regular language

{a} is a regular language for each a ∈ Σ; here we are
interpreting a as a string of length 1

If L1, L2 are regular then L1 ∪ L2 is regular

If L1, L2 are regular then L1L2 is regular

If L is regular, then L∗ = ∪n≥0Ln is regular

Regular languages are closed under the operations of union,
concatenation and Kleene star.

Nikita Borisov (UIUC) CS/ECE 374 3 Fall 2018 3 / 16

Regular Languages

A class of simple but very useful languages.
The set of regular languages over some alphabet Σ is defined
inductively as:

∅ is a regular language

{ε} is a regular language

{a} is a regular language for each a ∈ Σ; here we are
interpreting a as a string of length 1

If L1, L2 are regular then L1 ∪ L2 is regular

If L1, L2 are regular then L1L2 is regular

If L is regular, then L∗ = ∪n≥0Ln is regular

Regular languages are closed under the operations of union,
concatenation and Kleene star.

Nikita Borisov (UIUC) CS/ECE 374 3 Fall 2018 3 / 16

Regular Languages

A class of simple but very useful languages.
The set of regular languages over some alphabet Σ is defined
inductively as:

∅ is a regular language

{ε} is a regular language

{a} is a regular language for each a ∈ Σ; here we are
interpreting a as a string of length 1

If L1, L2 are regular then L1 ∪ L2 is regular

If L1, L2 are regular then L1L2 is regular

If L is regular, then L∗ = ∪n≥0Ln is regular

Regular languages are closed under the operations of union,
concatenation and Kleene star.

Nikita Borisov (UIUC) CS/ECE 374 3 Fall 2018 3 / 16

Regular Languages

A class of simple but very useful languages.
The set of regular languages over some alphabet Σ is defined
inductively as:

∅ is a regular language

{ε} is a regular language

{a} is a regular language for each a ∈ Σ; here we are
interpreting a as a string of length 1

If L1, L2 are regular then L1 ∪ L2 is regular

If L1, L2 are regular then L1L2 is regular

If L is regular, then L∗ = ∪n≥0Ln is regular

Regular languages are closed under the operations of union,
concatenation and Kleene star.

Nikita Borisov (UIUC) CS/ECE 374 3 Fall 2018 3 / 16

Some simple regular languages

Lemma
If w is a string then L = {w} is regular.

Example: {aba} or {abbabbab}. Why?

Lemma
Every finite language L is regular.

Examples: L = {a, abaab, aba}. L = {w | |w | ≤ 100}. Why?

Nikita Borisov (UIUC) CS/ECE 374 4 Fall 2018 4 / 16

Some simple regular languages

Lemma
If w is a string then L = {w} is regular.

Example: {aba} or {abbabbab}. Why?

Lemma
Every finite language L is regular.

Examples: L = {a, abaab, aba}. L = {w | |w | ≤ 100}. Why?

Nikita Borisov (UIUC) CS/ECE 374 4 Fall 2018 4 / 16

More Examples

{w | w is a keyword in Python program}
{w | w is a valid date of the form mm/dd/yy}
{w | w describes a valid Roman numeral}
{I , II , III , IV ,V ,VI ,VII ,VIII , IX ,X ,XI , . . .}.
{w | w contains ”CS374” as a substring}.

Nikita Borisov (UIUC) CS/ECE 374 5 Fall 2018 5 / 16

Part II

Regular Expressions

Nikita Borisov (UIUC) CS/ECE 374 6 Fall 2018 6 / 16

xkcd

https://xkcd.com/208/
Nikita Borisov (UIUC) CS/ECE 374 7 Fall 2018 7 / 16

https://xkcd.com/208/

Regular Expressions

A way to denote regular languages

simple patterns to describe related strings

useful in

text search (editors, Unix/grep, emacs)
compilers: lexical analysis
compact way to represent interesting/useful languages
dates back to 50’s: Stephen Kleene
who has a star named after him.

Nikita Borisov (UIUC) CS/ECE 374 8 Fall 2018 8 / 16

Inductive Definition

A regular expression r over an alphabhe Σ is one of the following:
Base cases:

∅ denotes the language ∅
ε denotes the language {ε}.
a denote the language {a}.

Inductive cases: If r1 and r2 are regular expressions denoting
languages R1 and R2 respectively then,

(r1 + r2) denotes the language R1 ∪ R2

(r1r2) denotes the language R1R2

(r1)∗ denotes the language R∗
1

Nikita Borisov (UIUC) CS/ECE 374 9 Fall 2018 9 / 16

Inductive Definition

A regular expression r over an alphabhe Σ is one of the following:
Base cases:

∅ denotes the language ∅
ε denotes the language {ε}.
a denote the language {a}.

Inductive cases: If r1 and r2 are regular expressions denoting
languages R1 and R2 respectively then,

(r1 + r2) denotes the language R1 ∪ R2

(r1r2) denotes the language R1R2

(r1)∗ denotes the language R∗
1

Nikita Borisov (UIUC) CS/ECE 374 9 Fall 2018 9 / 16

Regular Languages vs Regular Expressions

Regular Languages Regular Expressions

∅ regular ∅ denotes ∅
{ε} regular ε denotes {ε}
{a} regular for a ∈ Σ a denote {a}
R1 ∪ R2 regular if both are r1 + r2 denotes R1 ∪ R2

R1R2 regular if both are r1r2 denotes R1R2

R∗ is regular if R is r∗ denote R∗

Regular expressions denote regular languages — they explicitly show
the operations that were used to form the language

Nikita Borisov (UIUC) CS/ECE 374 10 Fall 2018 10 / 16

Notation and Parenthesis

For a regular expression r, L(r) is the language denoted by r.
Multiple regular expressions can denote the same language!
Example: (0 + 1) and (1 + 0) denote same language {0, 1}

Two regular expressions r1 and r2 are equivalent if
L(r1) = L(r2).

Omit parenthesis by adopting precedence order: ∗, concat, +.
Example: rs∗ + t = (r(s∗)) + t
Omit parenthesis by associativity of each of these operations.
Example: rst = (rs)t = r(st),
r + s + t = r + (s + t) = (r + s) + t.

Superscript +. For convenience, define r+ = rr∗. Hence if
L(r) = R then L(r+) = R+.

Other notation: r + s, r ∪ s, r |s all denote union. rs is
sometimes written as r·s.

Nikita Borisov (UIUC) CS/ECE 374 11 Fall 2018 11 / 16

Notation and Parenthesis

For a regular expression r, L(r) is the language denoted by r.
Multiple regular expressions can denote the same language!
Example: (0 + 1) and (1 + 0) denote same language {0, 1}
Two regular expressions r1 and r2 are equivalent if
L(r1) = L(r2).

Omit parenthesis by adopting precedence order: ∗, concat, +.
Example: rs∗ + t = (r(s∗)) + t
Omit parenthesis by associativity of each of these operations.
Example: rst = (rs)t = r(st),
r + s + t = r + (s + t) = (r + s) + t.

Superscript +. For convenience, define r+ = rr∗. Hence if
L(r) = R then L(r+) = R+.

Other notation: r + s, r ∪ s, r |s all denote union. rs is
sometimes written as r·s.

Nikita Borisov (UIUC) CS/ECE 374 11 Fall 2018 11 / 16

Notation and Parenthesis

For a regular expression r, L(r) is the language denoted by r.
Multiple regular expressions can denote the same language!
Example: (0 + 1) and (1 + 0) denote same language {0, 1}
Two regular expressions r1 and r2 are equivalent if
L(r1) = L(r2).

Omit parenthesis by adopting precedence order: ∗, concat, +.
Example: rs∗ + t = (r(s∗)) + t

Omit parenthesis by associativity of each of these operations.
Example: rst = (rs)t = r(st),
r + s + t = r + (s + t) = (r + s) + t.

Superscript +. For convenience, define r+ = rr∗. Hence if
L(r) = R then L(r+) = R+.

Other notation: r + s, r ∪ s, r |s all denote union. rs is
sometimes written as r·s.

Nikita Borisov (UIUC) CS/ECE 374 11 Fall 2018 11 / 16

Notation and Parenthesis

For a regular expression r, L(r) is the language denoted by r.
Multiple regular expressions can denote the same language!
Example: (0 + 1) and (1 + 0) denote same language {0, 1}
Two regular expressions r1 and r2 are equivalent if
L(r1) = L(r2).

Omit parenthesis by adopting precedence order: ∗, concat, +.
Example: rs∗ + t = (r(s∗)) + t
Omit parenthesis by associativity of each of these operations.
Example: rst = (rs)t = r(st),
r + s + t = r + (s + t) = (r + s) + t.

Superscript +. For convenience, define r+ = rr∗. Hence if
L(r) = R then L(r+) = R+.

Other notation: r + s, r ∪ s, r |s all denote union. rs is
sometimes written as r·s.

Nikita Borisov (UIUC) CS/ECE 374 11 Fall 2018 11 / 16

Notation and Parenthesis

For a regular expression r, L(r) is the language denoted by r.
Multiple regular expressions can denote the same language!
Example: (0 + 1) and (1 + 0) denote same language {0, 1}
Two regular expressions r1 and r2 are equivalent if
L(r1) = L(r2).

Omit parenthesis by adopting precedence order: ∗, concat, +.
Example: rs∗ + t = (r(s∗)) + t
Omit parenthesis by associativity of each of these operations.
Example: rst = (rs)t = r(st),
r + s + t = r + (s + t) = (r + s) + t.

Superscript +. For convenience, define r+ = rr∗. Hence if
L(r) = R then L(r+) = R+.

Other notation: r + s, r ∪ s, r |s all denote union. rs is
sometimes written as r·s.

Nikita Borisov (UIUC) CS/ECE 374 11 Fall 2018 11 / 16

Notation and Parenthesis

For a regular expression r, L(r) is the language denoted by r.
Multiple regular expressions can denote the same language!
Example: (0 + 1) and (1 + 0) denote same language {0, 1}
Two regular expressions r1 and r2 are equivalent if
L(r1) = L(r2).

Omit parenthesis by adopting precedence order: ∗, concat, +.
Example: rs∗ + t = (r(s∗)) + t
Omit parenthesis by associativity of each of these operations.
Example: rst = (rs)t = r(st),
r + s + t = r + (s + t) = (r + s) + t.

Superscript +. For convenience, define r+ = rr∗. Hence if
L(r) = R then L(r+) = R+.

Other notation: r + s, r ∪ s, r |s all denote union. rs is
sometimes written as r·s.

Nikita Borisov (UIUC) CS/ECE 374 11 Fall 2018 11 / 16

Skills

Given a language L “in mind” (say an English description) we
would like to write a regular expression for L (if possible)

Given a regular expression r we would like to “understand” L(r)
(say by giving an English description)

Nikita Borisov (UIUC) CS/ECE 374 12 Fall 2018 12 / 16

Skills

Given a language L “in mind” (say an English description) we
would like to write a regular expression for L (if possible)

Given a regular expression r we would like to “understand” L(r)
(say by giving an English description)

Nikita Borisov (UIUC) CS/ECE 374 12 Fall 2018 12 / 16

Understanding regular expressions

(0 + 1)∗: set of all strings over {0, 1}

(0 + 1)∗001(0 + 1)∗: strings with 001 as substring

0∗ + (0∗10∗10∗10∗)∗: strings with number of 1’s divisible by 3

∅0: {}
(ε + 1)(01)∗(ε + 0): alteranting 0s and 1s. Alternatively, no
two consecutive 0s and no two conescutive 1s

(ε + 0)(1 + 10)∗: strings without two consecutive 0s.

Nikita Borisov (UIUC) CS/ECE 374 13 Fall 2018 13 / 16

Understanding regular expressions

(0 + 1)∗: set of all strings over {0, 1}
(0 + 1)∗001(0 + 1)∗:

strings with 001 as substring

0∗ + (0∗10∗10∗10∗)∗: strings with number of 1’s divisible by 3

∅0: {}
(ε + 1)(01)∗(ε + 0): alteranting 0s and 1s. Alternatively, no
two consecutive 0s and no two conescutive 1s

(ε + 0)(1 + 10)∗: strings without two consecutive 0s.

Nikita Borisov (UIUC) CS/ECE 374 13 Fall 2018 13 / 16

Understanding regular expressions

(0 + 1)∗: set of all strings over {0, 1}
(0 + 1)∗001(0 + 1)∗: strings with 001 as substring

0∗ + (0∗10∗10∗10∗)∗: strings with number of 1’s divisible by 3

∅0: {}
(ε + 1)(01)∗(ε + 0): alteranting 0s and 1s. Alternatively, no
two consecutive 0s and no two conescutive 1s

(ε + 0)(1 + 10)∗: strings without two consecutive 0s.

Nikita Borisov (UIUC) CS/ECE 374 13 Fall 2018 13 / 16

Understanding regular expressions

(0 + 1)∗: set of all strings over {0, 1}
(0 + 1)∗001(0 + 1)∗: strings with 001 as substring

0∗ + (0∗10∗10∗10∗)∗:

strings with number of 1’s divisible by 3

∅0: {}
(ε + 1)(01)∗(ε + 0): alteranting 0s and 1s. Alternatively, no
two consecutive 0s and no two conescutive 1s

(ε + 0)(1 + 10)∗: strings without two consecutive 0s.

Nikita Borisov (UIUC) CS/ECE 374 13 Fall 2018 13 / 16

Understanding regular expressions

(0 + 1)∗: set of all strings over {0, 1}
(0 + 1)∗001(0 + 1)∗: strings with 001 as substring

0∗ + (0∗10∗10∗10∗)∗: strings with number of 1’s divisible by 3

∅0: {}
(ε + 1)(01)∗(ε + 0): alteranting 0s and 1s. Alternatively, no
two consecutive 0s and no two conescutive 1s

(ε + 0)(1 + 10)∗: strings without two consecutive 0s.

Nikita Borisov (UIUC) CS/ECE 374 13 Fall 2018 13 / 16

Understanding regular expressions

(0 + 1)∗: set of all strings over {0, 1}
(0 + 1)∗001(0 + 1)∗: strings with 001 as substring

0∗ + (0∗10∗10∗10∗)∗: strings with number of 1’s divisible by 3

∅0:

{}
(ε + 1)(01)∗(ε + 0): alteranting 0s and 1s. Alternatively, no
two consecutive 0s and no two conescutive 1s

(ε + 0)(1 + 10)∗: strings without two consecutive 0s.

Nikita Borisov (UIUC) CS/ECE 374 13 Fall 2018 13 / 16

Understanding regular expressions

(0 + 1)∗: set of all strings over {0, 1}
(0 + 1)∗001(0 + 1)∗: strings with 001 as substring

0∗ + (0∗10∗10∗10∗)∗: strings with number of 1’s divisible by 3

∅0: {}

(ε + 1)(01)∗(ε + 0): alteranting 0s and 1s. Alternatively, no
two consecutive 0s and no two conescutive 1s

(ε + 0)(1 + 10)∗: strings without two consecutive 0s.

Nikita Borisov (UIUC) CS/ECE 374 13 Fall 2018 13 / 16

Understanding regular expressions

(0 + 1)∗: set of all strings over {0, 1}
(0 + 1)∗001(0 + 1)∗: strings with 001 as substring

0∗ + (0∗10∗10∗10∗)∗: strings with number of 1’s divisible by 3

∅0: {}
(ε + 1)(01)∗(ε + 0):

alteranting 0s and 1s. Alternatively, no
two consecutive 0s and no two conescutive 1s

(ε + 0)(1 + 10)∗: strings without two consecutive 0s.

Nikita Borisov (UIUC) CS/ECE 374 13 Fall 2018 13 / 16

Understanding regular expressions

(0 + 1)∗: set of all strings over {0, 1}
(0 + 1)∗001(0 + 1)∗: strings with 001 as substring

0∗ + (0∗10∗10∗10∗)∗: strings with number of 1’s divisible by 3

∅0: {}
(ε + 1)(01)∗(ε + 0): alteranting 0s and 1s. Alternatively, no
two consecutive 0s and no two conescutive 1s

(ε + 0)(1 + 10)∗: strings without two consecutive 0s.

Nikita Borisov (UIUC) CS/ECE 374 13 Fall 2018 13 / 16

Understanding regular expressions

(0 + 1)∗: set of all strings over {0, 1}
(0 + 1)∗001(0 + 1)∗: strings with 001 as substring

0∗ + (0∗10∗10∗10∗)∗: strings with number of 1’s divisible by 3

∅0: {}
(ε + 1)(01)∗(ε + 0): alteranting 0s and 1s. Alternatively, no
two consecutive 0s and no two conescutive 1s

(ε + 0)(1 + 10)∗:

strings without two consecutive 0s.

Nikita Borisov (UIUC) CS/ECE 374 13 Fall 2018 13 / 16

Understanding regular expressions

(0 + 1)∗: set of all strings over {0, 1}
(0 + 1)∗001(0 + 1)∗: strings with 001 as substring

0∗ + (0∗10∗10∗10∗)∗: strings with number of 1’s divisible by 3

∅0: {}
(ε + 1)(01)∗(ε + 0): alteranting 0s and 1s. Alternatively, no
two consecutive 0s and no two conescutive 1s

(ε + 0)(1 + 10)∗: strings without two consecutive 0s.

Nikita Borisov (UIUC) CS/ECE 374 13 Fall 2018 13 / 16

Creating regular expressions

bitstrings with the pattern 001 or the pattern 100 ocurring as a
substring

one answer: (0 + 1)∗001(0 + 1)∗ + (0 + 1)∗100(0 + 1)∗

bitstrings with an even number of 1’s
one answer: 0∗ + (0∗10∗10∗)∗

bitstrings with an odd number of 1’s
one answer: 0∗1r where r is solution to previous part

bitstrings that do not contain 011 as a substring
one answer: 0∗(10+)∗(1 + ε)
(1∗0+ + 0∗)(10+)∗(1 + ε)

Hard: bitstrings with an odd number of 1s and an odd number
of 0s.

Nikita Borisov (UIUC) CS/ECE 374 14 Fall 2018 14 / 16

Creating regular expressions

bitstrings with the pattern 001 or the pattern 100 ocurring as a
substring
one answer: (0 + 1)∗001(0 + 1)∗ + (0 + 1)∗100(0 + 1)∗

bitstrings with an even number of 1’s
one answer: 0∗ + (0∗10∗10∗)∗

bitstrings with an odd number of 1’s
one answer: 0∗1r where r is solution to previous part

bitstrings that do not contain 011 as a substring
one answer: 0∗(10+)∗(1 + ε)
(1∗0+ + 0∗)(10+)∗(1 + ε)

Hard: bitstrings with an odd number of 1s and an odd number
of 0s.

Nikita Borisov (UIUC) CS/ECE 374 14 Fall 2018 14 / 16

Creating regular expressions

bitstrings with the pattern 001 or the pattern 100 ocurring as a
substring
one answer: (0 + 1)∗001(0 + 1)∗ + (0 + 1)∗100(0 + 1)∗

bitstrings with an even number of 1’s

one answer: 0∗ + (0∗10∗10∗)∗

bitstrings with an odd number of 1’s
one answer: 0∗1r where r is solution to previous part

bitstrings that do not contain 011 as a substring
one answer: 0∗(10+)∗(1 + ε)
(1∗0+ + 0∗)(10+)∗(1 + ε)

Hard: bitstrings with an odd number of 1s and an odd number
of 0s.

Nikita Borisov (UIUC) CS/ECE 374 14 Fall 2018 14 / 16

Creating regular expressions

bitstrings with the pattern 001 or the pattern 100 ocurring as a
substring
one answer: (0 + 1)∗001(0 + 1)∗ + (0 + 1)∗100(0 + 1)∗

bitstrings with an even number of 1’s
one answer: 0∗ + (0∗10∗10∗)∗

bitstrings with an odd number of 1’s
one answer: 0∗1r where r is solution to previous part

bitstrings that do not contain 011 as a substring
one answer: 0∗(10+)∗(1 + ε)
(1∗0+ + 0∗)(10+)∗(1 + ε)

Hard: bitstrings with an odd number of 1s and an odd number
of 0s.

Nikita Borisov (UIUC) CS/ECE 374 14 Fall 2018 14 / 16

Creating regular expressions

bitstrings with the pattern 001 or the pattern 100 ocurring as a
substring
one answer: (0 + 1)∗001(0 + 1)∗ + (0 + 1)∗100(0 + 1)∗

bitstrings with an even number of 1’s
one answer: 0∗ + (0∗10∗10∗)∗

bitstrings with an odd number of 1’s

one answer: 0∗1r where r is solution to previous part

bitstrings that do not contain 011 as a substring
one answer: 0∗(10+)∗(1 + ε)
(1∗0+ + 0∗)(10+)∗(1 + ε)

Hard: bitstrings with an odd number of 1s and an odd number
of 0s.

Nikita Borisov (UIUC) CS/ECE 374 14 Fall 2018 14 / 16

Creating regular expressions

bitstrings with the pattern 001 or the pattern 100 ocurring as a
substring
one answer: (0 + 1)∗001(0 + 1)∗ + (0 + 1)∗100(0 + 1)∗

bitstrings with an even number of 1’s
one answer: 0∗ + (0∗10∗10∗)∗

bitstrings with an odd number of 1’s
one answer: 0∗1r where r is solution to previous part

bitstrings that do not contain 011 as a substring
one answer: 0∗(10+)∗(1 + ε)
(1∗0+ + 0∗)(10+)∗(1 + ε)

Hard: bitstrings with an odd number of 1s and an odd number
of 0s.

Nikita Borisov (UIUC) CS/ECE 374 14 Fall 2018 14 / 16

Creating regular expressions

bitstrings with the pattern 001 or the pattern 100 ocurring as a
substring
one answer: (0 + 1)∗001(0 + 1)∗ + (0 + 1)∗100(0 + 1)∗

bitstrings with an even number of 1’s
one answer: 0∗ + (0∗10∗10∗)∗

bitstrings with an odd number of 1’s
one answer: 0∗1r where r is solution to previous part

bitstrings that do not contain 011 as a substring

one answer: 0∗(10+)∗(1 + ε)
(1∗0+ + 0∗)(10+)∗(1 + ε)

Hard: bitstrings with an odd number of 1s and an odd number
of 0s.

Nikita Borisov (UIUC) CS/ECE 374 14 Fall 2018 14 / 16

Creating regular expressions

bitstrings with the pattern 001 or the pattern 100 ocurring as a
substring
one answer: (0 + 1)∗001(0 + 1)∗ + (0 + 1)∗100(0 + 1)∗

bitstrings with an even number of 1’s
one answer: 0∗ + (0∗10∗10∗)∗

bitstrings with an odd number of 1’s
one answer: 0∗1r where r is solution to previous part

bitstrings that do not contain 011 as a substring
one answer: 0∗(10+)∗(1 + ε)
(1∗0+ + 0∗)(10+)∗(1 + ε)

Hard: bitstrings with an odd number of 1s and an odd number
of 0s.

Nikita Borisov (UIUC) CS/ECE 374 14 Fall 2018 14 / 16

Creating regular expressions

bitstrings with the pattern 001 or the pattern 100 ocurring as a
substring
one answer: (0 + 1)∗001(0 + 1)∗ + (0 + 1)∗100(0 + 1)∗

bitstrings with an even number of 1’s
one answer: 0∗ + (0∗10∗10∗)∗

bitstrings with an odd number of 1’s
one answer: 0∗1r where r is solution to previous part

bitstrings that do not contain 011 as a substring
one answer: 0∗(10+)∗(1 + ε)
(1∗0+ + 0∗)(10+)∗(1 + ε)

Hard: bitstrings with an odd number of 1s and an odd number
of 0s.

Nikita Borisov (UIUC) CS/ECE 374 14 Fall 2018 14 / 16

Regular expression identities

r∗r∗ = r∗ meaning for any regular expression r ,
L(r∗r∗) = L(r∗)

(r∗)∗ = r∗

rr∗ = r∗r
(rs)∗r = r(sr)∗

(r + s)∗ = (r∗s∗)∗ = (r∗ + s∗)∗ = (r + s∗)∗ = . . .

Question: How does on prove an identity?
By induction. On what? Length of r since r is a string obtained from
specific inductive rules.

Nikita Borisov (UIUC) CS/ECE 374 15 Fall 2018 15 / 16

Regular expression identities

r∗r∗ = r∗ meaning for any regular expression r ,
L(r∗r∗) = L(r∗)

(r∗)∗ = r∗

rr∗ = r∗r
(rs)∗r = r(sr)∗

(r + s)∗ = (r∗s∗)∗ = (r∗ + s∗)∗ = (r + s∗)∗ = . . .

Question: How does on prove an identity?

By induction. On what? Length of r since r is a string obtained from
specific inductive rules.

Nikita Borisov (UIUC) CS/ECE 374 15 Fall 2018 15 / 16

Regular expression identities

r∗r∗ = r∗ meaning for any regular expression r ,
L(r∗r∗) = L(r∗)

(r∗)∗ = r∗

rr∗ = r∗r
(rs)∗r = r(sr)∗

(r + s)∗ = (r∗s∗)∗ = (r∗ + s∗)∗ = (r + s∗)∗ = . . .

Question: How does on prove an identity?
By induction. On what?

Length of r since r is a string obtained from
specific inductive rules.

Nikita Borisov (UIUC) CS/ECE 374 15 Fall 2018 15 / 16

Regular expression identities

r∗r∗ = r∗ meaning for any regular expression r ,
L(r∗r∗) = L(r∗)

(r∗)∗ = r∗

rr∗ = r∗r
(rs)∗r = r(sr)∗

(r + s)∗ = (r∗s∗)∗ = (r∗ + s∗)∗ = (r + s∗)∗ = . . .

Question: How does on prove an identity?
By induction. On what? Length of r since r is a string obtained from
specific inductive rules.

Nikita Borisov (UIUC) CS/ECE 374 15 Fall 2018 15 / 16

A non-regular language and other closure

properties

Consider L = {0n1n | n ≥ 0} = {ε, 01, 0011, 000111, . . .}.

Theorem
L is not a regular language.

How do we prove it?

Other questions:

Suppose R1 is regular and R2 is regular. Is R1 ∩ R2 regular?

Suppose R1 is regular is R̄1 (complement of R1) regular?

Nikita Borisov (UIUC) CS/ECE 374 16 Fall 2018 16 / 16

A non-regular language and other closure

properties

Consider L = {0n1n | n ≥ 0} = {ε, 01, 0011, 000111, . . .}.

Theorem
L is not a regular language.

How do we prove it?

Other questions:

Suppose R1 is regular and R2 is regular. Is R1 ∩ R2 regular?

Suppose R1 is regular is R̄1 (complement of R1) regular?

Nikita Borisov (UIUC) CS/ECE 374 16 Fall 2018 16 / 16

A non-regular language and other closure

properties

Consider L = {0n1n | n ≥ 0} = {ε, 01, 0011, 000111, . . .}.

Theorem
L is not a regular language.

How do we prove it?

Other questions:

Suppose R1 is regular and R2 is regular. Is R1 ∩ R2 regular?

Suppose R1 is regular is R̄1 (complement of R1) regular?

Nikita Borisov (UIUC) CS/ECE 374 16 Fall 2018 16 / 16

A non-regular language and other closure

properties

Consider L = {0n1n | n ≥ 0} = {ε, 01, 0011, 000111, . . .}.

Theorem
L is not a regular language.

How do we prove it?

Other questions:

Suppose R1 is regular and R2 is regular. Is R1 ∩ R2 regular?

Suppose R1 is regular is R̄1 (complement of R1) regular?

Nikita Borisov (UIUC) CS/ECE 374 16 Fall 2018 16 / 16

	Regular Languages
	Regular Expressions

