CS/ECE 374: Algorithms & Models of Computation, Fall 2018

Regular Languages and Expressions

Lecture 2 August 30, 2018

Part I

Regular Languages

A class of simple but very useful languages.

The set of regular languages over some alphabet Σ is defined inductively as:

∅ is a regular language

A class of simple but very useful languages.

The set of regular languages over some alphabet Σ is defined inductively as:

- ∅ is a regular language
- ullet $\{\epsilon\}$ is a regular language

A class of simple but very useful languages.

The set of regular languages over some alphabet Σ is defined inductively as:

- ∅ is a regular language
- ullet $\{\epsilon\}$ is a regular language
- $\{a\}$ is a regular language for each $a \in \Sigma$; here we are interpreting a as a string of length 1

A class of simple but very useful languages.

The set of regular languages over some alphabet Σ is defined inductively as:

- ∅ is a regular language
- ullet $\{\epsilon\}$ is a regular language
- $\{a\}$ is a regular language for each $a \in \Sigma$; here we are interpreting a as a string of length 1
- If L_1, L_2 are regular then $L_1 \cup L_2$ is regular

A class of simple but very useful languages.

The set of regular languages over some alphabet Σ is defined inductively as:

- ∅ is a regular language
- ullet $\{\epsilon\}$ is a regular language
- $\{a\}$ is a regular language for each $a \in \Sigma$; here we are interpreting a as a string of length 1
- If L_1, L_2 are regular then $L_1 \cup L_2$ is regular
- If L_1 , L_2 are regular then L_1L_2 is regular

A class of simple but very useful languages.

The set of regular languages over some alphabet Σ is defined inductively as:

- ∅ is a regular language
- ullet $\{\epsilon\}$ is a regular language
- $\{a\}$ is a regular language for each $a \in \Sigma$; here we are interpreting a as a string of length 1
- ullet If L_1,L_2 are regular then $L_1\cup L_2$ is regular
- If L_1 , L_2 are regular then L_1L_2 is regular
- If L is regular, then $L^* = \bigcup_{n \geq 0} L^n$ is regular $L : \{0, 0\}$

A class of simple but very useful languages.

The set of regular languages over some alphabet Σ is defined inductively as:

- ∅ is a regular language
- ullet $\{\epsilon\}$ is a regular language
- $\{a\}$ is a regular language for each $a \in \Sigma$; here we are interpreting a as a string of length 1
- If L_1, L_2 are regular then $L_1 \cup L_2$ is regular
- If L_1 , L_2 are regular then L_1L_2 is regular
- If L is regular, then $L^* = \bigcup_{n \geq 0} L^n$ is regular

A class of simple but very useful languages.

The set of regular languages over some alphabet Σ is defined inductively as:

- ∅ is a regular language
- ullet $\{\epsilon\}$ is a regular language
- $\{a\}$ is a regular language for each $a \in \Sigma$; here we are interpreting a as a string of length 1
- If L_1, L_2 are regular then $L_1 \cup L_2$ is regular
- If L_1 , L_2 are regular then L_1L_2 is regular
- If L is regular, then $L^* = \bigcup_{n \geq 0} L^n$ is regular

Regular languages are closed under the operations of union, concatenation and Kleene star.

Some simple regular languages

Lemma

If w is a string then $L = \{w\}$ is regular.

Example: $\{aba\}$ or $\{abbabbab\}$. Why?

Some simple regular languages

Lemma

If w is a string then $L = \{w\}$ is regular.

Example: {aba} or {abbabbab}. Why?

Lemma

Every finite language **L** is regular.

Examples: $L = \{a, abaab, aba\}$. $L = \{w \mid |w| \le 100\}$. Why?

More Examples

- $\{w \mid w \text{ is a keyword in Python program}\}$
- {w | w is a valid date of the form mm/dd/yy}
- {w | w describes a valid Roman numeral}{I, II, III, IV, V, VI, VII, VIII, IX, X, XI, ...}.
- $\{w \mid w \text{ contains "CS374" as a substring}\}$.

Part II

Regular Expressions

Regular Expressions

A way to denote regular languages

- simple patterns to describe related strings
- useful in
 - text search (editors, Unix/grep, emacs)
 - compilers: lexical analysis
 - compact way to represent interesting/useful languages
 - dates back to 50's: Stephen Kleene who has a star names after him.

Inductive Definition

A regular expression \mathbf{r} over an alphabhe Σ is one of the following: Base cases:

- ∅ denotes the language ∅
- ϵ denotes the language $\{\epsilon\}$.
- a denote the language {a}.

Inductive Definition

A regular expression \mathbf{r} over an alphabhe Σ is one of the following: Base cases:

- ullet \emptyset denotes the language \emptyset
- ϵ denotes the language $\{\epsilon\}$.
- a denote the language {a}.

Inductive cases: If r_1 and r_2 are regular expressions denoting languages R_1 and R_2 respectively then,

- ullet (r_1+r_2) denotes the language $R_1\cup R_2$
- (r_1r_2) denotes the language R_1R_2
- $(r_1)^*$ denotes the language R_1^*

Regular Languages vs Regular Expressions

Regular Languages

```
\emptyset regular \{\epsilon\} regular \{a\} regular for a \in \Sigma R_1 \cup R_2 regular if both are R_1R_2 regular if both are R^* is regular if R is
```

Regular Expressions

```
\emptyset denotes \emptyset
\epsilon denotes \{\epsilon\}
\mathbf{a} denote \{a\}
\mathbf{r}_1 + \mathbf{r}_2 denotes R_1 \cup R_2
\mathbf{r}_1\mathbf{r}_2 denotes R_1R_2
\mathbf{r}^* denote R^*
```

Regular expressions denote regular languages — they explicitly show the operations that were used to form the language

• For a regular expression r, L(r) is the language denoted by r. Multiple regular expressions can denote the same language! Example: (0+1) and (1+0) denote same language $\{0,1\}$

- For a regular expression \mathbf{r} , $L(\mathbf{r})$ is the language denoted by \mathbf{r} . Multiple regular expressions can denote the same language! **Example:** (0+1) and (1+0) denote same language $\{0,1\}$
- Two regular expressions \mathbf{r}_1 and \mathbf{r}_2 are equivalent if $L(\mathbf{r}_1) = L(\mathbf{r}_2)$.

- For a regular expression \mathbf{r} , $L(\mathbf{r})$ is the language denoted by \mathbf{r} . Multiple regular expressions can denote the same language! **Example:** (0+1) and (1+0) denote same language $\{0,1\}$
- Two regular expressions \mathbf{r}_1 and \mathbf{r}_2 are equivalent if $L(\mathbf{r}_1) = L(\mathbf{r}_2)$.
- Omit parenthesis by adopting precedence order: *, concat, +. Example: $r^*s + t = ((r^*)s) + t$

- For a regular expression \mathbf{r} , $L(\mathbf{r})$ is the language denoted by \mathbf{r} . Multiple regular expressions can denote the same language! **Example:** (0+1) and (1+0) denote same language $\{0,1\}$
- Two regular expressions \mathbf{r}_1 and \mathbf{r}_2 are equivalent if $L(\mathbf{r}_1) = L(\mathbf{r}_2)$.
- Omit parenthesis by adopting precedence order: *, concat, +. Example: $r^*s + t = ((r^*)s) + t$
- Omit parenthesis by associativity of each of these operations. **Example:** rst = (rs)t = r(st), r + s + t = r + (s + t) = (r + s) + t.

- For a regular expression \mathbf{r} , $L(\mathbf{r})$ is the language denoted by \mathbf{r} . Multiple regular expressions can denote the same language! **Example:** (0+1) and (1+0) denote same language $\{0,1\}$
- Two regular expressions \mathbf{r}_1 and \mathbf{r}_2 are equivalent if $L(\mathbf{r}_1) = L(\mathbf{r}_2)$.
- Omit parenthesis by adopting precedence order: *, concat, +. Example: $r^*s + t = ((r^*)s) + t$
- Omit parenthesis by associativity of each of these operations. **Example:** rst = (rs)t = r(st), r + s + t = r + (s + t) = (r + s) + t.
- Superscript +. For convenience, define $r^+ = rr^*$. Hence if L(r) = R then $L(r^+) = R^+$.

- For a regular expression \mathbf{r} , $L(\mathbf{r})$ is the language denoted by \mathbf{r} . Multiple regular expressions can denote the same language! **Example:** (0+1) and (1+0) denote same language $\{0,1\}$
- Two regular expressions \mathbf{r}_1 and \mathbf{r}_2 are equivalent if $L(\mathbf{r}_1) = L(\mathbf{r}_2)$.
- Omit parenthesis by adopting precedence order: *, concat, +. Example: $r^*s + t = ((r^*)s) + t$
- Omit parenthesis by associativity of each of these operations. **Example:** rst = (rs)t = r(st), r + s + t = r + (s + t) = (r + s) + t.
- Superscript +. For convenience, define $r^+ = rr^*$. Hence if L(r) = R then $L(r^+) = R^+$.
- Other notation: r + s, $r \cup s$, $r \mid s$ all denote union. rs is sometimes written as $r \cdot s$.

Skills

 Given a language L "in mind" (say an English description) we would like to write a regular expression for L (if possible)

Skills

- Given a language L "in mind" (say an English description) we would like to write a regular expression for L (if possible)
- Given a regular expression r we would like to "understand" L(r)
 (say by giving an English description)

• $(0+1)^*$: set of all strings over $\{0,1\}$

- $(0+1)^*$: set of all strings over $\{0,1\}$
- (0+1)*001(0+1)*:

- $(0+1)^*$: set of all strings over $\{0,1\}$
- (0+1)*001(0+1)*: strings with **001** as substring

(0+1)*: set of all strings over {0,1}
(0+1)*001(0+1)*: strings with 001 as substring
0* + (0*10*10*10*)*:

- $(0+1)^*$: set of all strings over $\{0,1\}$
- (0+1)*001(0+1)*: strings with 001 as substring
- $0^* + (0^*10^*10^*10^*)^*$: strings with number of 1's divisible by 3

(0+1)*: set of all strings over {0,1}
(0+1)*001(0+1)*: strings with 001 as substring
0* + (0*10*10*10*)*: strings with number of 1's divisible by 3
Ø0: {}

```
(0 + 1)*: set of all strings over {0,1}
(0 + 1)*001(0 + 1)*: strings with 001 as substring
0* + (0*10*10*10*)*: strings with number of 1's divisible by 3
Ø0: {}
(ε + 1)(01)*(ε + 0):
Σ, 61, 6101, 61011,
```

- $(0+1)^*$: set of all strings over $\{0,1\}$
- (0+1)*001(0+1)*: strings with 001 as substring
- $0^* + (0^*10^*10^*10^*)^*$: strings with number of 1's divisible by 3
- Ø**0**: {}
- $(\epsilon + 1)(01)^*(\epsilon + 0)$: alteranting 0s and 1s. Alternatively, no two consecutive 0s and no two consecutive 1s

- $(0+1)^*$: set of all strings over $\{0,1\}$
- (0+1)*001(0+1)*: strings with 001 as substring
- $0^* + (0^*10^*10^*10^*)^*$: strings with number of 1's divisible by 3
- Ø0: {}
- $(\epsilon + 1)(01)^*(\epsilon + 0)$: alteranting 0s and 1s. Alternatively, no two consecutive 0s and no two consecutive 1s
- $(\epsilon + 0)(1 + 10)^*$:

Understanding regular expressions

- $(0+1)^*$: set of all strings over $\{0,1\}$
- (0+1)*001(0+1)*: strings with 001 as substring
- $0^* + (0^*10^*10^*10^*)^*$: strings with number of 1's divisible by 3
- Ø0: {}
- $(\epsilon + 1)(01)^*(\epsilon + 0)$: alteranting 0s and 1s. Alternatively, no two consecutive 0s and no two consecutive 1s
- $(\epsilon + 0)(1 + 10)^*$: strings without two consecutive 0s.

bitstrings with the parttern 001 or the patter 100 ocurring as a substring

$$(0+1)^{*}$$
 601 $(0+1)^{*}$
 $+ (0+1)^{*}$ 100 $(0+1)^{*}$
 $= (0+1)^{*}$ (001+ 100) $(0+1)^{*}$

 \bullet bitstrings with the parttern 001 or the patter 100 ocurring as a substring

• bitstrings with the parttern 001 or the patter 100 ocurring as a substring one answer: (0+1)*001(0+1)* + (0+1)*100(0+1)*

• bitstrings with an even number of 1's

 \bullet bitstrings with the parttern 001 or the patter 100 ocurring as a substring

one answer: (0+1)*001(0+1)* + (0+1)*100(0+1)*

bitstrings with an even number of 1's one answer: 0* + (0*10*10*)*

 \bullet bitstrings with the parttern 001 or the patter 100 ocurring as a substring

```
one answer: (0+1)*001(0+1)* + (0+1)*100(0+1)*
```

- bitstrings with an even number of 1's one answer: 0* + (0*10*10*)*
- bitstrings with an odd number of 1's

 \bullet bitstrings with the parttern 001 or the patter 100 ocurring as a substring

- bitstrings with an even number of 1's one answer: 0* + (0*10*10*)*
- bitstrings with an odd number of 1's one answer: 0*1r where r is solution to previous part

 \bullet bitstrings with the parttern 001 or the patter 100 ocurring as a substring

- bitstrings with an even number of 1's one answer: $0^* + (0^*10^*10^*)^*$
- bitstrings with an odd number of 1's one answer: 0*1r where r is solution to previous part
- bitstrings that do not contain 011 as a substring

ullet bitstrings with the parttern 001 or the patter 100 ocurring as a substring

- bitstrings with an even number of 1's one answer: $0^* + (0^*10^*10^*)^*$
- bitstrings with an odd number of 1's one answer: 0*1r where r is solution to previous part
- bitstrings that do *not* contain **011** as a substring one answer: $0*(10^+)*(1+\epsilon)$ $(0^{\frac{1}{4}}+1^{\frac{1}{4}})(10^{\frac{1}{4}})$ $(0^{\frac{1}{4}}+1^{\frac{1}{4}})(10^{\frac{1}{4}})$

- bitstrings with the parttern 001 or the patter 100 ocurring as a substring one answer: (0+1)*001(0+1)* + (0+1)*100(0+1)*
- bitstrings with an even number of 1's one answer: 0* + (0*10*10*)*
- bitstrings with an odd number of 1's one answer: 0*1r where r is solution to previous part
- bitstrings that do *not* contain **011** as a substring one answer: $0^*(10^+)^*(1+\epsilon)$
- Hard: bitstrings with an odd number of 1s and an odd number of 0s.

- $r^*r^* = r^*$ meaning for any regular expression r, $L(r^*r^*) = L(r^*)$
- $(r^*)^* = r^*$
- $rr^* = r^*r$
- (rs)*r = r(sr)*
- $(r+s)^* = (r^*s^*)^* = (r^*+s^*)^* = (r+s^*)^* = \dots$

- $r^*r^* = r^*$ meaning for any regular expression r, $L(r^*r^*) = L(r^*)$
- $(r^*)^* = r^*$
- $rr^* = r^*r$
- $(rs)^*r = r(sr)^*$
- $(r+s)^* = (r^*s^*)^* = (r^*+s^*)^* = (r+s^*)^* = \dots$

Question: How does on prove an identity?

- $r^*r^* = r^*$ meaning for any regular expression r, $L(r^*r^*) = L(r^*)$
- $(r^*)^* = r^*$
- $\bullet rr^* = r^*r$
- $(rs)^*r = r(sr)^*$
- $(r+s)^* = (r^*s^*)^* = (r^*+s^*)^* = (r+s^*)^* = \dots$

Question: How does on prove an identity? By induction. On what?

- $r^*r^* = r^*$ meaning for any regular expression r, $L(r^*r^*) = L(r^*)$
- $(r^*)^* = r^*$
- $rr^* = r^*r$
- $(rs)^*r = r(sr)^*$
- $(r+s)^* = (r^*s^*)^* = (r^*+s^*)^* = (r+s^*)^* = \dots$

Question: How does on prove an identity?

By induction. On what? Length of r since r is a string obtained from specific inductive rules.

Consider
$$L = \{0^n 1^n \mid n \ge 0\} = \{\epsilon, 01, 0011, 000111, \ldots\}.$$

Consider
$$L = \{0^n 1^n \mid n \ge 0\} = \{\epsilon, 01, 0011, 000111, \ldots\}.$$

Theorem

L is not a regular language.

Consider
$$L = \{0^n 1^n \mid n \ge 0\} = \{\epsilon, 01, 0011, 000111, \ldots\}.$$

Theorem

L is not a regular language.

How do we prove it?

Consider
$$L = \{0^n 1^n \mid n \ge 0\} = \{\epsilon, 01, 0011, 000111, \ldots\}.$$

Theorem

L is not a regular language.

How do we prove it?

Other questions:

- Suppose R_1 is regular and R_2 is regular. Is $R_1 \cap R_2$ regular?
- Suppose R_1 is regular is \bar{R}_1 (complement of R_1) regular?