CS/ECE 374: Algorithms & Models of Computation

Nikita Borisov

University of Illinois, Urbana-Champaign

Fall 2018

CS/ECE 374: Algorithms & Models of Computation, Fall 2018

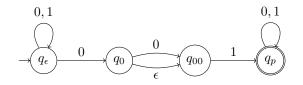
Non-deterministic Finite Automata (NFAs)

Lecture 4 September 6, 2018

Part I

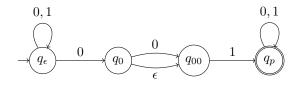
NFA Introduction

Non-deterministic Finite State Automata (NFAs)



When you come to the fork in the road, take it! -Yogi Berra

Non-deterministic Finite State Automata (NFAs)



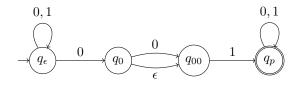
When you come to the fork in the road, take it!

–Yogi Berra

Differences from DFA

- From state q on same letter $a \in \Sigma$ multiple possible states
- No transitions from *q* on some letters
- *ϵ*-transitions!

Non-deterministic Finite State Automata (NFAs)



When you come to the fork in the road, take it!

–Yogi Berra

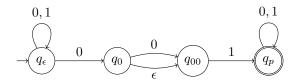
Differences from DFA

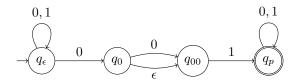
- From state q on same letter $a \in \Sigma$ multiple possible states
- No transitions from *q* on some letters
- *ϵ*-transitions!

Questions:

- Is this a "real" machine?
- What does it do?

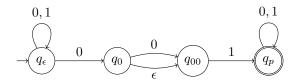
Nikita Borisov (UIUC)



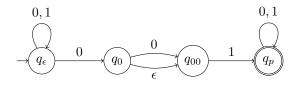


Machine on input string w from state q can lead to set of states (could be empty)

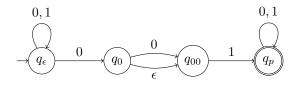
• From q_{ϵ} on 1



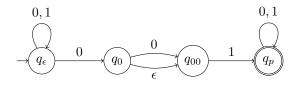
- From q_{ϵ} on 1
- From q_{ϵ} on **0**



- From q_{ϵ} on 1
- From q_{ϵ} on 0
- From q_0 on ϵ

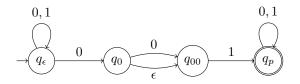


- From q_{ϵ} on 1
- From q_{ϵ} on **0**
- From q_0 on ϵ
- From q_{ϵ} on 01



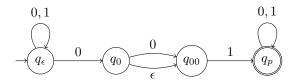
- From q_{ϵ} on 1
- From q_{ϵ} on **0**
- From q_0 on ϵ
- From q_{ϵ} on 01
- From *q*₀₀ on **00**

NFA acceptance: informal



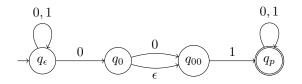
Informal definition: A NFA N accepts a string w iff some accepting state is reached by N from the start state on input w.

NFA acceptance: informal

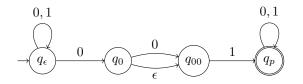


Informal definition: A NFA N accepts a string w iff some accepting state is reached by N from the start state on input w.

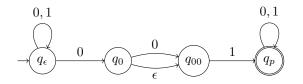
The language accepted (or recognized) by a NFA N is denote by L(N) and defined as: $L(N) = \{w \mid N \text{ accepts } w\}$.



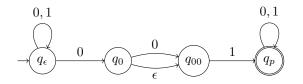
• Is **01** accepted?



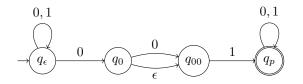
- Is **01** accepted?
- Is 001 accepted?



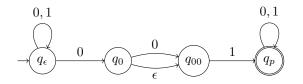
- Is **01** accepted?
- Is 001 accepted?
- Is 100 accepted?



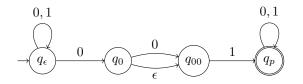
- Is **01** accepted?
- Is 001 accepted?
- Is 100 accepted?
- Are all strings in 1*01 accepted?



- Is **01** accepted?
- Is 001 accepted?
- Is 100 accepted?
- Are all strings in 1*01 accepted?
- What is the language accepted by N?



- Is **01** accepted?
- Is 001 accepted?
- Is 100 accepted?
- Are all strings in 1*01 accepted?
- What is the language accepted by N?



- Is **01** accepted?
- Is 001 accepted?
- Is 100 accepted?
- Are all strings in 1*01 accepted?
- What is the language accepted by N?

Comment: Unlike DFAs, it is easier in NFAs to show that a string is accepted than to show that a string is **not** accepted.

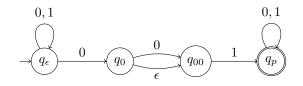
Formal Tuple Notation

Definition

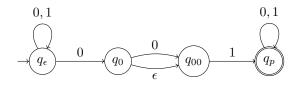
A non-deterministic finite automata (NFA) $N = (Q, \Sigma, \delta, s, A)$ is a five tuple where

- Q is a finite set whose elements are called states,
- Σ is a finite set called the input alphabet,
- $\delta: Q \times \Sigma \cup {\epsilon} \rightarrow \mathcal{P}(Q)$ is the transition function (here $\mathcal{P}(Q)$ is the power set of Q),
- $s \in Q$ is the start state,
- $A \subseteq Q$ is the set of accepting/final states.

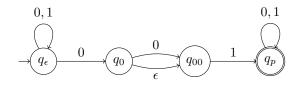
 $\delta(q,a)$ for $a \in \Sigma \cup \{\epsilon\}$ is a susbet of Q — a set of states.



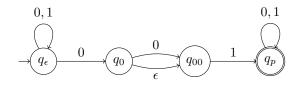
• *Q* =



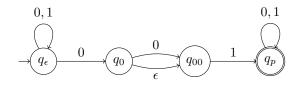
• $Q = \{q_{\epsilon}, q_0, q_{00}, q_p\}$



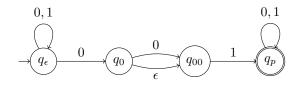
Q = {q_ε, q₀, q₀₀, q_p}
Σ =



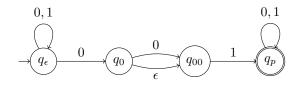
Q = {q_ε, q₀, q₀₀, q_p}
Σ = {0,1}



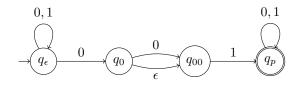
- $Q = \{q_{\epsilon}, q_{0}, q_{00}, q_{p}\}$
- $\Sigma=\{0,1\}$
- δ



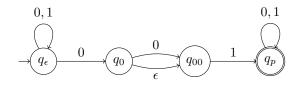
- $Q = \{q_{\epsilon}, q_0, q_{00}, q_p\}$
- $\Sigma = \{0, 1\}$
- δ
- *s* =



- $Q = \{q_{\epsilon}, q_0, q_{00}, q_p\}$
- $\Sigma = \{0,1\}$
- δ
- $s = q_{\epsilon}$



- $Q = \{q_{\epsilon}, q_0, q_{00}, q_p\}$
- $\Sigma = \{0,1\}$
- δ
- $s = q_{\epsilon}$
- *A* =



- $Q = \{q_{\epsilon}, q_0, q_{00}, q_p\}$
- $\Sigma = \{0, 1\}$
- δ
- $s = q_{\epsilon}$
- $A = \{q_p\}$

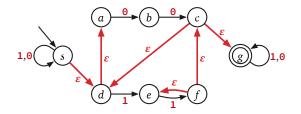
Given NFA $N = (Q, \Sigma, \delta, s, A)$, $\delta(q, a)$ is a set of states that N can go to from q on reading $a \in \Sigma \cup \{\epsilon\}$.

Given NFA $N = (Q, \Sigma, \delta, s, A)$, $\delta(q, a)$ is a set of states that N can go to from q on reading $a \in \Sigma \cup \{\epsilon\}$.

Want transition function $\delta^* : Q \times \Sigma^* \to \mathcal{P}(Q)$ where $\delta^*(q, w)$ is the set of states that can be reached by N on input w starting in state q.

Definition

For NFA $N = (Q, \Sigma, \delta, s, A)$ and $q \in Q$ the ϵ reach(q) is the set of all states that q can reach using only ϵ -transitions.



Definition

For NFA $N = (Q, \Sigma, \delta, s, A)$ and $q \in Q$ the ϵ reach(q) is the set of all states that q can reach using only ϵ -transitions.

Definition

Inductive definition of $\delta^* : Q \times \Sigma^* \to \mathcal{P}(Q)$:

• if
$$w = \epsilon$$
, $\delta^*(q, w) = \epsilon \operatorname{reach}(q)$

Definition

For NFA $N = (Q, \Sigma, \delta, s, A)$ and $q \in Q$ the ϵ reach(q) is the set of all states that q can reach using only ϵ -transitions.

Definition

Inductive definition of $\delta^* : Q \times \Sigma^* \to \mathcal{P}(Q)$:

- if $w = \epsilon$, $\delta^*(q, w) = \epsilon \operatorname{reach}(q)$
- if w = a where $a \in \Sigma$ $\delta^*(q, a) = \bigcup_{p \in \epsilon \operatorname{reach}(q)} (\bigcup_{r \in \delta(p, a)} \epsilon \operatorname{reach}(r))$

Extending the transition function to strings

Definition

For NFA $N = (Q, \Sigma, \delta, s, A)$ and $q \in Q$ the ϵ reach(q) is the set of all states that q can reach using only ϵ -transitions.

Definition

Inductive definition of $\delta^* : Q \times \Sigma^* \to \mathcal{P}(Q)$:

• if $w = \epsilon$, $\delta^*(q, w) = \epsilon \operatorname{reach}(q)$

• if
$$w = a$$
 where $a \in \Sigma$
 $\delta^*(q, a) = \bigcup_{p \in \epsilon \operatorname{reach}(q)} (\bigcup_{r \in \delta(p, a)} \epsilon \operatorname{reach}(r))$

• If w = ax, $\delta^*(q, w) = \bigcup_{p \in ereach(q)} (\bigcup_{r \in \delta(p,a)} \delta^*(r, x))$

Formal definition of language accepted by N

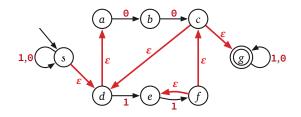
Definition

A string w is accepted by NFA N if $\delta_N^*(s, w) \cap A \neq \emptyset$.

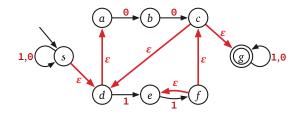
Definition

The language L(N) accepted by a NFA $N = (Q, \Sigma, \delta, s, A)$ is

 $\{w \in \mathbf{\Sigma}^* \mid \delta^*(s, w) \cap A \neq \emptyset\}.$

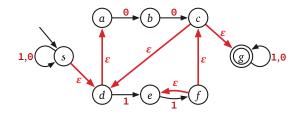


What is:



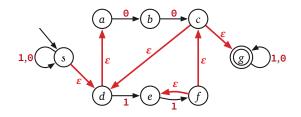
What is:

- $\delta^*(s,\epsilon)$
- δ[∗](s, 0)



What is:

- $\delta^*(s,\epsilon)$
- δ[∗](s, 0)
- δ*(c,0)



What is:

- $\delta^*(s,\epsilon)$
- δ[∗](s, 0)
- δ*(c, 0)
- δ*(b,00)

Another definition of computation

Definition

A state p is reachable from q on w denoted by $q \xrightarrow{w}_N p$ if there exists a sequence of states r_0, r_1, \ldots, r_k and a sequence x_1, x_2, \ldots, x_k where $x_i \in \Sigma \cup \{\epsilon\}$ for each i, such that:

- $r_0 = q$,
- for each $i, r_{i+1} \in \delta(r_i, x_{i+1})$,
- $r_k = p$, and
- $w = x_1 x_2 x_3 \cdots x_k$.

Definition

$$\delta^*N(q,w) = \{p \in Q \mid q \xrightarrow{w}_N p\}.$$

Why non-determinism?

- Non-determinism adds power to the model; richer programming language and hence (much) easier to "design" programs
- Fundamental in **theory** to prove many theorems
- Very important in **practice** directly and indirectly
- Many deep connections to various fields in Computer Science and Mathematics

Many interpretations of non-determinism. Hard to understand at the outset. Get used to it and then you will appreciate it slowly.

Part II

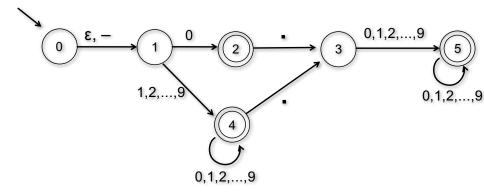
Constructing NFAs

DFAs and NFAs

- Every DFA is a NFA so NFAs are at least as powerful as DFAs.
- NFAs prove ability to "guess and verify" which simplifies design and reduces number of states
- Easy proofs of some closure properties

Strings that represent decimal numbers.

Strings that represent decimal numbers.



• {strings that contain CS374 as a substring}

- {strings that contain CS374 as a substring}
- {strings that contain CS374 or CS473 as a substring}

- {strings that contain CS374 as a substring}
- {strings that contain CS374 or CS473 as a substring}
- {strings that contain CS374 and CS473 as substrings}

$L_k = \{$ bitstrings that have a 1 k positions from the end $\}$

Theorem

For every NFA N there is another NFA N' such that L(N) = L(N')and such that N' has the following two properties:

- N' has single final state f that has no outgoing transitions
- The start state **s** of **N** is different from **f**

Part III

Closure Properties of NFAs

Closure properties of NFAs

Are the class of languages accepted by NFAs closed under the following operations?

- union
- intersection
- concatenation
- Kleene star
- complement

Closure under union

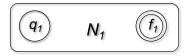
Theorem

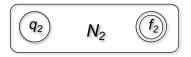
For any two NFAs N_1 and N_2 there is a NFA N such that $L(N) = L(N_1) \cup L(N_2)$.

Closure under union

Theorem

For any two NFAs N_1 and N_2 there is a NFA N such that $L(N) = L(N_1) \cup L(N_2)$.





Closure under concatenation

Theorem

For any two NFAs N_1 and N_2 there is a NFA N such that $L(N) = L(N_1) \cdot L(N_2)$.

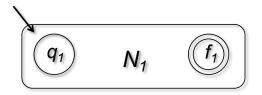
Closure under concatenation

Theorem

For any two NFAs N_1 and N_2 there is a NFA N such that $L(N) = L(N_1) \cdot L(N_2)$.

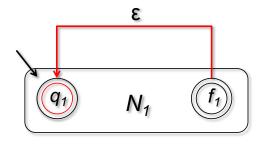
Theorem

For any NFA N_1 there is a NFA N such that $L(N) = (L(N_1))^*$.



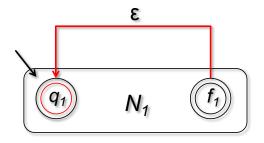
Theorem

For any NFA N_1 there is a NFA N such that $L(N) = (L(N_1))^*$.



Theorem

For any NFA N_1 there is a NFA N such that $L(N) = (L(N_1))^*$.

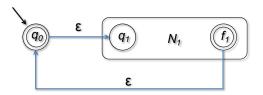


Does not work! Why?

Nikita Borisov (UIUC)

Theorem

For any NFA N_1 there is a NFA N such that $L(N) = (L(N_1))^*$.



Part IV

NFAs capture Regular Languages

Regular Languages Recap

Regular Languages

 \emptyset regular $\{\epsilon\}$ regular $\{a\}$ regular for $a \in \Sigma$ $R_1 \cup R_2$ regular if both are R_1R_2 regular if both are R^* is regular if R is **Regular Expressions**

 \emptyset denotes \emptyset ϵ denotes $\{\epsilon\}$ a denote $\{a\}$ $\mathbf{r}_1 + \mathbf{r}_2$ denotes $R_1 \cup R_2$ $\mathbf{r}_1\mathbf{r}_2$ denotes R_1R_2 \mathbf{r}^* denote R^*

Regular expressions denote regular languages — they explicitly show the operations that were used to form the language

Theorem

For every regular language L there is an NFA N such that L = L(N).

Proof strategy:

- For every regular expression r show that there is a NFA N such that L(r) = L(N)
- Induction on length of *r*

- For every regular expression r show that there is a NFA N such that L(r) = L(N)
- Induction on length of *r*

Base cases: \emptyset , $\{\epsilon\}$, $\{a\}$ for $a \in \Sigma$

- For every regular expression r show that there is a NFA N such that L(r) = L(N)
- Induction on length of *r*

Inductive cases:

• r_1, r_2 regular expressions and $r = r_1 + r_2$.

- For every regular expression r show that there is a NFA N such that L(r) = L(N)
- Induction on length of r

Inductive cases:

• r_1 , r_2 regular expressions and $r = r_1 + r_2$. By induction there are NFAs N_1 , N_2 s.t $L(N_1) = L(r_1)$ and $L(N_2) = L(r_2)$.

- For every regular expression r show that there is a NFA N such that L(r) = L(N)
- Induction on length of r

Inductive cases:

• r_1, r_2 regular expressions and $r = r_1 + r_2$. By induction there are NFAs N_1, N_2 s.t $L(N_1) = L(r_1)$ and $L(N_2) = L(r_2)$. We have already seen that there is NFA N s.t $L(N) = L(N_1) \cup L(N_2)$, hence L(N) = L(r)

- For every regular expression r show that there is a NFA N such that L(r) = L(N)
- Induction on length of r

Inductive cases:

- r_1, r_2 regular expressions and $r = r_1 + r_2$. By induction there are NFAs N_1, N_2 s.t $L(N_1) = L(r_1)$ and $L(N_2) = L(r_2)$. We have already seen that there is NFA N s.t $L(N) = L(N_1) \cup L(N_2)$, hence L(N) = L(r)
- $\mathbf{r} = \mathbf{r}_1 \cdot \mathbf{r}_2$.

- For every regular expression r show that there is a NFA N such that L(r) = L(N)
- Induction on length of r

Inductive cases:

- r_1, r_2 regular expressions and $r = r_1 + r_2$. By induction there are NFAs N_1, N_2 s.t $L(N_1) = L(r_1)$ and $L(N_2) = L(r_2)$. We have already seen that there is NFA N s.t $L(N) = L(N_1) \cup L(N_2)$, hence L(N) = L(r)
- $r = r_1 \cdot r_2$. Use closure of NFA languages under concatenation

- For every regular expression r show that there is a NFA N such that L(r) = L(N)
- Induction on length of r

Inductive cases:

- r_1, r_2 regular expressions and $r = r_1 + r_2$. By induction there are NFAs N_1, N_2 s.t $L(N_1) = L(r_1)$ and $L(N_2) = L(r_2)$. We have already seen that there is NFA N s.t $L(N) = L(N_1) \cup L(N_2)$, hence L(N) = L(r)
- r = r₁ r₂. Use closure of NFA languages under concatenation
 r = (r₁)*.

- For every regular expression r show that there is a NFA N such that L(r) = L(N)
- Induction on length of r

Inductive cases:

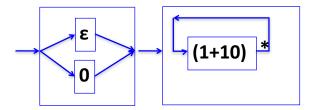
- r_1, r_2 regular expressions and $r = r_1 + r_2$. By induction there are NFAs N_1, N_2 s.t $L(N_1) = L(r_1)$ and $L(N_2) = L(r_2)$. We have already seen that there is NFA N s.t $L(N) = L(N_1) \cup L(N_2)$, hence L(N) = L(r)
- $r = r_1 \cdot r_2$. Use closure of NFA languages under concatenation

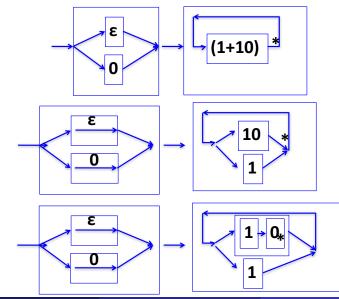
34

• $r = (r_1)^*$. Use closure of NFA languages under Kleene star

(ε+0)(1+10)^{*}

$$\rightarrow$$
 (ϵ +0) \rightarrow (1+10)^{*}

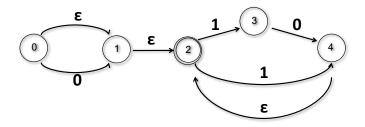




Nikita Borisov (UIUC)

CS/ECE 374





Final NFA simplified slightly to reduce states

Nikita Borisov (UIUC)