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Regular Languages, DFAs, NFAs

Theorem
Languages accepted by DFAs, NFAs, and regular expressions are the
same.

DFAs are special cases of NFAs (trivial)

NFAs accept regular expressions (today)

DFAs accept languages accepted by NFAs (today)

Regular expressions for languages accepted by DFAs (later in the
course)
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Part I

Closure Properties of NFAs
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A simple transformation

Theorem
For every NFA N there is another NFA N ′ such that L(N) = L(N ′)
and such that N ′ has the following two properties:

N ′ has single final state f that has no outgoing transitions

The start state s of N is different from f
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Closure Properties of NFAs

Are the class of languages accepted by NFAs closed under the
following operations?

union

intersection

concatenation

Kleene star

complement
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Example

3, 7, 4 3, 7, 4

3 7 4

All strings that contain the substring 374

3, 7, 4 3, 7, 4

4 7 3

All strings that contain the substring 473
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Example II

3, 7, 4 3, 7, 4

3 7 4

3, 7, 4 3, 7, 4

4 7 3

ϵ

ϵ

All strings that contain either 374 or 473
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Closure under union

Theorem
For any two NFAs N1 and N2 there is a NFA N such that
L(N) = L(N1) ∪ L(N2).

q1 f1N1

q2 f2N2
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Closure under concatenation

Theorem
For any two NFAs N1 and N2 there is a NFA N such that
L(N) = L(N1)·L(N2).

q1 f1N1 q2 f2N2
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Closure under Kleene star

Theorem
For any NFA N1 there is a NFA N such that L(N) = (L(N1))∗.

q1 f1N1
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Closure under Kleene star

Theorem
For any NFA N1 there is a NFA N such that L(N) = (L(N1))∗.

q1 f1N1

ε

Does not work! Why?
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Closure under Kleene star

Theorem
For any NFA N1 there is a NFA N such that L(N) = (L(N1))∗.

q1 f1N1q0
ε

ε
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Part II

NFAs capture Regular Languages
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Regular Languages Recap

Regular Languages Regular Expressions

∅ regular ∅ denotes ∅
{ε} regular ε denotes {ε}
{a} regular for a ∈ Σ a denote {a}
R1 ∪ R2 regular if both are r1 + r2 denotes R1 ∪ R2

R1R2 regular if both are r1r2 denotes R1R2

R∗ is regular if R is r∗ denote R∗

Regular expressions denote regular languages — they explicitly show
the operations that were used to form the language
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NFAs and Regular Language

Theorem
For every regular language L there is an NFA N such that L = L(N).

Proof strategy:

For every regular expression r show that there is a NFA N such
that L(r) = L(N)

Induction on length of r
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NFAs and Regular Language

For every regular expression r show that there is a NFA N such
that L(r) = L(N)

Induction on length of r

Base cases: ∅, ε, a for a ∈ Σ
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NFAs and Regular Language

For every regular expression r show that there is a NFA N such
that L(r) = L(N)

Induction on length of r

Inductive cases:

r1, r2 regular expressions and r = r1 + r2.

By induction there are NFAs N1,N2 s.t
L(N1) = L(r1) and L(N2) = L(r2). We have already seen that
there is NFA N s.t L(N) = L(N1) ∪ L(N2), hence
L(N) = L(r)

r = r1·r2. Use closure of NFA languages under concatenation

r = (r1)∗. Use closure of NFA languages under Kleene star
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Example

(ε+0)(1+10)*

(ε+0) (1+10)*

ε

0
(1+10) *
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Example

ε

0
(1+10) *

ε

0 1
*10

ε

0
1

*1	 0
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Example

ε

0
1

*1	 0

0 1

ε

0

ε 42

3

1

1 0

ε

Final NFA simplified slightly to reduce states
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Part III

Equivalence of NFAs and DFAs
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Equivalence of NFAs and DFAs

Theorem
For every NFA N there is a DFA M such that L(M) = L(N).
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Formal Tuple Notation for NFA

Definition
A non-deterministic finite automata (NFA) N = (Q,Σ, δ, s,A) is a
five tuple where

Q is a finite set whose elements are called states,

Σ is a finite set called the input alphabet,

δ : Q × Σ ∪ {ε} → P(Q) is the transition function (here
P(Q) is the power set of Q),

s ∈ Q is the start state,

A ⊆ Q is the set of accepting/final states.

δ(q, a) for a ∈ Σ ∪ {ε} is a susbet of Q — a set of states.

Nikita Borisov (UIUC) CS/ECE 374 23 Fall 2018 23 / 49



Extending the transition function to strings

Definition
For NFA N = (Q,Σ, δ, s,A) and q ∈ Q the εreach(q) is the set
of all states that q can reach using only ε-transitions.

Definition
Inductive definition of δ∗ : Q × Σ∗ → P(Q):

if w = ε, δ∗(q,w) = εreach(q)

if w = a where a ∈ Σ
δ∗(q, a) = ∪p∈εreach(q)(∪r∈δ(p,a)εreach(r))

if w = xa,
δ∗(q,w) = ∪p∈δ∗(q,x)(∪r∈δ(p,a)εreach(r))

Nikita Borisov (UIUC) CS/ECE 374 24 Fall 2018 24 / 49



Formal definition of language accepted by N

Definition
A string w is accepted by NFA N if δ∗N(s,w) ∩ A 6= ∅.

Definition
The language L(N) accepted by a NFA N = (Q,Σ, δ, s,A) is

{w ∈ Σ∗ | δ∗(s,w) ∩ A 6= ∅}.

Nikita Borisov (UIUC) CS/ECE 374 25 Fall 2018 25 / 49



Simulating an NFA by a DFA

Think of a program with fixed memory that needs to simulate
NFA N on input w .

What does it need to store after seeing a prefix x of w?

It needs to know at least δ∗(s, x), the set of states that N
could be in after reading x
Is it sufficient? Yes, if it can compute δ∗(s, xa) after seeing
another symbol a in the input.

When should the program accept a string w? If
δ∗(s,w) ∩ A 6= ∅.

Key Observation: A DFA M that simulates N should keep in its
memory/state the set of states of N

Thus the state space of the DFA should be P(Q).
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Subset Construction

NFA N = (Q,Σ, s, δ,A). We create a DFA
M = (Q′,Σ, δ′, s ′,A′) as follows:

Q′ = P(Q)

s ′ = εreach(s) = δ∗(s, ε)
A′ = {X ⊆ Q | X ∩ A 6= ∅}
δ′(X , a) = ∪q∈Xδ

∗(q, a) for each X ⊆ Q, a ∈ Σ.
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Example

No ε-transitions

active thread in a particular state. Thus, to simulate the NFA, the DFA only needs to maintain the current
set of states of the NFA.

The formal construction based on the above idea is as follows. Consider an NFA N = (Q,⌃, �, s, A).
Define the DFA det(N) = (Q0,⌃, �0, s0, A0) as follows.

• Q0 = P(Q)

• s0 = �⇤N (s, ✏)

• A0 = {X ✓ Q | X \ A 6= ;}

• �0({q1, q2, . . . qk}, a) = �⇤N (q1, a) [ �⇤N (q2, a) [ · · · [ �⇤N (qk, a) or more concisely,

�0(X, a) =
[

q2X

�⇤N (q, a)

An example NFA is shown in Figure 4 along with the DFA det(N) in Figure 5.

q0 q1

0, 1

1

0, 1

Figure 4: NFA N

{q0} {q0, q1}

{q1} {}

0
0, 1

0, 10, 1

1

Figure 5: DFA det(N) equivalent to N

We will now prove that the DFA defined above is correct. That is

Lemma 4. L(N) = L(det(N))

Proof. Need to show
8w 2 ⌃⇤. det(N) accepts w i↵ N accepts w
8w 2 ⌃⇤. �⇤det(N)(s

0, w) 2 A0 i↵ �⇤N (s, w) \ A 6= ;
8w 2 ⌃⇤. �⇤det(N)(s

0, w) \ A 6= ; i↵ �⇤N (s, w) \ A 6= ;
Again for the induction proof to go through we need to strengthen the claim as follows.

8w 2 ⌃⇤. �⇤det(N)(s
0, w) = �⇤N (s, w)

In other words, this says that the state of the DFA after reading some string is exactly the set of states the
NFA could be in after reading the same string.

The proof of the strengthened statement is by induction on |w|.

Base Case If |w| = 0 then w = ✏. Now

�⇤det(N)(s
0, ✏) = s0 = �⇤N (s, ✏) by the defn. of �⇤det(N) and defn. of s0

7
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Incremental construction

Only build states reachable from s ′ = εreach(s) the start state of M

Induction Hypothesis Assume inductively that the statement holds 8w. |w| < n.

Induction Step Let w be such that |w| = n (for n > 0). Without loss of generality w is of the form ua
with |u| = n � 1 and a 2 ⌃.

�⇤det(N)(s
0, ua) = �⇤det(N)(�

⇤
det(N)(s, u), a) property of �⇤ of DFAs

= �0(�⇤det(N)(s, u), a) property of �⇤ of DFAs

=
S

q2�⇤
det(N)

(s,u) �
⇤
N (q, a) definition of �0

=
S

q2�⇤N (s,u) �
⇤
N (q, a) induction hypothesis on u

= �⇤N (s, ua) Proposition 1

3.1 Relevant States

The formal definition of the DFA has many states, several of which are unreachable from the initial state
(see Figure 5). To make the algorithm simpler for a human to implement (and for the resulting DFA to be
readable), one can include only the reachable states. To do this,

1. Start by drawing the initial state of the DFA.

2. While there are states with missing transitions, draw the missing transitions creating any new states
that maybe needed.

3. Step 2 is repeated until transitions from every state has been drawn.

4. Figure out which states are final, and mark them appropriately.

The method of adding only relevant states is shown in Figures 6 and 7.

q0

q1

q2

q3

✏ 0

1 ✏

Figure 6: NFA N✏

{q0, q1} {q2, q3}

{q3} {}

1

0 0, 1

0, 1

0, 1

Figure 7: DFA det(N✏) with only relevant states

8

δ′(X , a) = ∪q∈Xδ
∗(q, a)

Nikita Borisov (UIUC) CS/ECE 374 30 Fall 2018 30 / 49



Incremental algorithm

Build M beginning with start state s ′ == εreach(s)

For each existing state X ⊆ Q consider each a ∈ Σ and
calculate the state Y = δ′(X , a) = ∪q∈Xδ

∗(q, a) and add a
transition.

If Y is a new state add it to reachable states that need to
explored.

To compute δ∗(q, a) - set of all states reached from q on string a
Compute X = εreach(q)

Compute Y = ∪p∈Xδ(p, a)

Compute Z = εreach(Y ) = ∪r∈Y εreach(r)
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Proof of Correctness

Theorem
Let N = (Q,Σ, s, δ,A) be a NFA and let M = (Q′,Σ, δ′, s ′,A′)
be a DFA constructed from N via the subset construction. Then
L(N) = L(M).

Stronger claim:

Lemma
For every string w , δ∗N(s,w) = δ∗M(s ′,w).

Proof by induction on |w |.

Base case: w = ε.
δ∗N(s, ε) = εreach(s).
δ∗M(s ′, ε) = s ′ = εreach(s) by definition of s ′.
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Proof continued

Lemma
For every string w , δ∗N(s,w) = δ∗M(s ′,w).

Inductive step: w = xa (Note: suffix definition of strings)
δ∗N(s, xa) = ∪p∈δ∗N(s,x)δ

∗
N(p, a) by inductive defn of δ∗N

δ∗M(s ′, xa) = δM(δ∗M(s ′, x), a) by inductive defn of δ∗M

By inductive hypothesis: Y = δ∗N(s, x) = δ∗M(s, x)

Thus δ∗N(s, xa) = ∪p∈Y δ
∗
N(p, a) = δM(Y , a) by definition of δM .

Therefore,
δ∗N(s, xa) = δM(Y , a) = δM(δ∗M(s ′, x), a) = δ∗M(s ′, xa)
which is what we need.
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Part IV

Closure Properties of Regular
Languages
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Regular Languages

Regular languages have three different characterizations

Inductive definition via base cases and closure under union,
concatenation and Kleene star

Languages accepted by DFAs

Languages accepted by NFAs

Regular language closed under many operations:

union, concatenation, Kleene star via inductive definition or
NFAs

complement, union, intersection via DFAs

homomorphism, inverse homomorphism, reverse, . . .

Different representations allow for flexibility in proofs
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Examples: PREFIX and SUFFIX

Let L be a language over Σ.

Definition
PREFIX(L) = {w | wx ∈ L, x ∈ Σ∗}

Definition
SUFFIX(L) = {w | xw ∈ L, x ∈ Σ∗}

Theorem
If L is regular then PREFIX(L) is regular.

Theorem
If L is regular then SUFFIX(L) is regular.
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PREFIX

Let M = (Q,Σ, δ, s,A) be a DFA that recognizes L

Create new DFA/NFA to accept PREFIX(L) (or SUFFIX(L)).

X = {q ∈ Q | s can reach q in M}
Y = {q ∈ Q | q can reach some state in A}
Z = X ∩ Y

Theorem
Consider DFA M ′ = (Q,Σ, δ, s,Z). L(M ′) = PREFIX(L).
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SUFFIX

Let M = (Q,Σ, δ, s,A) be a DFA that recognizes L

X = {q ∈ Q | s can reach q in M}

Consider NFA N = (Q ∪ {s ′},Σ, δ′, s ′,A). Add new start state s ′

and ε-transition from s ′ to each state in X .

Claim: L(N) = SUFFIX(L).
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Part V

DFA to Regular Expressions
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DFA to Regular Expressions

Theorem
Given a DFA M = (Q,Σ, δ, s,A) there is a regular expression r
such that L(r) = L(M). That is, regular expressions are as powerful
as DFAs (and hence also NFAs).

Simple algorithm but formal proof is involved. See notes.

An easier proof via a more involved algorithm later in course.
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Stage 0: Input

A B

C

a

b
a

a, b

b
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Stage 1: Normalizing

A B

C

a

b
a

a, b

b

2: Normalizing it.

init A B

C AC

ǫ a
b

a

a+ b

b

ǫ
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Stage 2: Remove state A

init A B

C AC

ǫ a
b

a

a+ b

b

ǫ

init A B

C AC

ǫ a
b

a

a+ b

b

ǫ

a

b
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Stage 4: Redrawn without old edges

init B

C AC

b

a

a+ b

ǫ

a

b
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Stage 4: Removing B

init B

C AC

b

a

a+ b

ǫ

a

b

init B

C AC

b

a

a+ b

ǫ

a

b

ab∗a
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Stage 5: Redraw

init

C AC

a+ b

ǫ

ab∗a+ b
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Stage 6: Removing C

init

C AC

a+ b

ǫ

ab∗a+ b

init

C AC

a+ b

ǫ

ab∗a+ b

(ab∗a+ b)(a+ b)∗ ǫ
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Stage 7: Redraw

init AC
(ab∗a+ b)(a+ b)∗
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Stage 8: Extract regular expression

init AC
(ab∗a+ b)(a+ b)∗

Thus, this automata is equivalent to the regular expression
(ab∗a + b)(a + b)∗.
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