CS/ECE 374: Algorithms & Models of

Computation, Fall 2018

NFAs continued, Closure
Properties of Regular

Languages

Lecture 5
September 11, 2018

CS/ECE 374 1 Fall 2018 1/31

Regular Languages, DFAs, NFAs

Languages accepted by DFAs, NFAs, and regular expressions are the
same.

Chandra Chekuri (UIUC) CS/ECE 374 Fall 2018 2 /31

Regular Languages, DFAs, NFAs

Languages accepted by DFAs, NFAs, and regular expressions are the
same.

@ DFAs are special cases of NFAs (trivial)

@ NFAs accept regular expressions (we saw already)

@ DFAs accept languages accepted by NFAs (today)

@ Regular expressions for languages accepted by DFAs (later in the
course)

Chandra Chekuri (UIUC) CS/ECE 374 Fall 2018 2/31

Part |

Equivalence of NFAs and DFAs

CS/ECE 374 Fall 2018 3/31

Equivalence of NFAs and DFAs
For every NFA N there is a DFA M such that L(M) = L(N). \

Chandra Chekuri (UIUC) CS/ECE 374 Fall 2018 4 /31

Formal Tuple Notation for NFA

A non-deterministic finite automata (NFA) N = (Q, X, 4, s, A) is a
five tuple where

@ @ is a finite set whose elements are called states,
@ X is a finite set called the input alphabet,

0 d:Q X XU{e} — P(Q) is the transition function (here
P(Q) is the power set of Q),

@ s € Q is the start state,
@ A C Q@ is the set of accepting/final states.

d(q,a) for a € T U {€} is a susbet of Q — a set of states.

Chandra Chekuri (UIUC) CS/ECE 374 Fall 2018 5/31

Extending the transition function to strings

Definition
For NFAN = (Q, X, 9,s,A) and g € Q the ereach(q) is the set
of all states that g can reach using only e-transitions.

Inductive definition of 8* : Q@ X X* — P(Q):
o if w =¢, 6*(q, w) = ereach(q)

o ifw=awhereac X

6*(q, a) = Upeereach(q)(U,Eg(p,a)ereach(r))
o if w = xa,

6*(g, w) = Upes=(q.0)(Ures(p,a) €reach(r))

Chandra Chekuri (UIUC) CS/ECE 374 Fall 2018 6 /31

Formal definition of language accepted by N

A string w is accepted by NFA N if 85 (s, w) N A # 0.

| A\

Definition
The language L(N) accepted by a NFA N = (Q, X, d, s, A) is

{w € T | 6 (s, w) N A # 0}.

A\

Chandra Chekuri (UIUC) CS/ECE 374 Fall 2018 7/31

Simulating an NFA by a DFA

@ Think of a program with fixed memory that needs to simulate
NFA N on input w.

@ What does it need to store after seeing a prefix x of w?

Chandra Chekuri (UIUC) CS/ECE 374 Fall 2018 8 /31

Simulating an NFA by a DFA

@ Think of a program with fixed memory that needs to simulate
NFA N on input w.

@ What does it need to store after seeing a prefix x of w?

@ It needs to know at least §*(s, x), the set of states that N
could be in after reading x

@ Is it sufficient?

Chandra Chekuri (UIUC) CS/ECE 374 Fall 2018 8 /31

Simulating an NFA by a DFA

@ Think of a program with fixed memory that needs to simulate
NFA N on input w.

@ What does it need to store after seeing a prefix x of w?

@ It needs to know at least §*(s, x), the set of states that N
could be in after reading x

o Is it sufficient? Yes, if it can compute 6*(s, xa) after seeing
another symbol a in the input.

@ When should the program accept a string w?

Chandra Chekuri (UIUC) CS/ECE 374 Fall 2018 8 /31

Simulating an NFA by a DFA

@ Think of a program with fixed memory that needs to simulate
NFA N on input w.

@ What does it need to store after seeing a prefix x of w?

@ It needs to know at least §*(s, x), the set of states that N
could be in after reading x

o Is it sufficient? Yes, if it can compute 6*(s, xa) after seeing
another symbol a in the input.

@ When should the program accept a string w? If
0*(s,w) N A #0.

Key Observation: A DFA M that simulates N should keep in its
memory /state the set of states of N

Thus the state space of the DFA should be P(Q).

Chandra Chekuri (UIUC) CS/ECE 374 Fall 2018 8 /31

Subset Construction

NFA N = (Q, X, s, d, A). We create a DFA
M=(Q',X,d,s’,A’) as follows:

° @ =7P(Q)

Chandra Chekuri (UIUC) CS/ECE 374 Fall 2018 9 /31

Subset Construction

NFA N = (Q, X, s, d, A). We create a DFA
M=(Q',X,d,s’,A’) as follows:

° @ =7P(Q)

e s’ = ereach(s) = 0*(s,€)

Chandra Chekuri (UIUC) CS/ECE 374 Fall 2018 9 /31

Subset Construction

NFA N = (Q, X, s, d, A). We create a DFA
M=(Q',X,d,s’,A’) as follows:

o @ =7P(Q)

e s’ = ereach(s) = 0*(s,€)

e A={XCQ|XNA%#0}

Chandra Chekuri (UIUC) CS/ECE 374 Fall 2018 9 /31

Subset Construction

NFA N = (Q, X, s, d, A). We create a DFA
M=(Q',X,d,s’,A’) as follows:

°e Q'=P(Q)

e s’ = ereach(s) = 0*(s,€)

e A={XCQ|XNAG%0}

e 0'(X,a) = Ugex6*(q,a) foreach X C Q, a € X.

Chandra Chekuri (UIUC) CS/ECE 374 Fall 2018 9 /31

Example

No e-transitions

0,1 0,1
oN

Chandra Chekuri (UIUC) CS/ECE 374 Fall 2018 10 / 31

No e-transitions

Chandra Chekuri (UIUC) CS/ECE 374 Fall 2018 11 /31

Incremental construction

Only build states reachable from s’ = ereach(s) the start state of M

0,1

0'(X,a) = Ugexd*(q, a)

Chandra Chekuri (UIUC) CS/ECE 374 Fall 2018 12 /31

Incremental algorithm

@ Build M beginning with start state s’ == ereach(s)

o For each existing state X C @ consider each a € X and
calculate the state Y = ¢’(X, a) = Ugexd*(q, a) and add a
transition.

o If Y is a new state add it to reachable states that need to
explored.

To compute d*(q, a) - set of all states reached from q on string a

e Compute X = ereach(q)

o Compute Y = Upexd(p,a)

o Compute Z = ereach(Y) = U,cyereach(r)

Chandra Chekuri (UIUC) CS/ECE 374 13 Fall 2018 13 /31

Proof of Correctness

Let N = (Q,X,s,d,A) bea NFA and let M = (Q’, X, §',s’, A)
be a DFA constructed from N via the subset construction. Then
L(N) = L(M).

Chandra Chekuri (UIUC) CS/ECE 374 14 Fall 2018 14 / 31

Proof of Correctness

Let N = (Q,X,s,d,A) bea NFA and let M = (Q’, X, §',s’, A)
be a DFA constructed from N via the subset construction. Then
L(N) = L(M).

Stronger claim:

For every string w, dy,(s, w) = dy,(s’, w). l

Proof by induction on |w/|.

Base case: w = €.
0p (s, €) = ereach(s).
0r,(s’, €) = s’ = ereach(s) by definition of s’.

Chandra Chekuri (UIUC) CS/ECE 374 14 Fall 2018 14 / 31

Proof continued
For every string w, dy(s, w) = d;y,(s’, w). \

Inductive step: w = xa (Note: suffix definition of strings)
On (s, xa) = Upesz(s,x)On (P> @) by inductive defn of &y,

Chandra Chekuri (UIUC) CS/ECE 374 Fall 2018 15 / 31

Proof continued
For every string w, dy(s, w) = d;y,(s’, w). \

Inductive step: w = xa (Note: suffix definition of strings)
On (s, xa) = Upesz(s,x)On (P> @) by inductive defn of &y,
Or(s’yxa) = 6M(5 (s, x), a) by inductive defn of 5,

Chandra Chekuri (UIUC) CS/ECE 374 Fall 2018 15 / 31

Proof continued
For every string w, dy(s, w) = d;y,(s’, w). \

Inductive step: w = xa (Note: suffix definition of strings)
On (s, xa) = Upesz(s,x)On (P> @) by inductive defn of &y,
Or(s’yxa) = 6M(5 (s, x), a) by inductive defn of 5,

By inductive hypothesis: Y = dy(s, x) = d3,(s, x)

Chandra Chekuri (UIUC) CS/ECE 374 Fall 2018 15 / 31

Proof continued

For every string w, dy(s, w) = d;y,(s’, w).

Inductive step: w = xa (Note: suffix definition of strings)
On (s, xa) = Upesz(s,x)On (P> @) by inductive defn of &y,
Or,(s’y xa) = dm(93,(s, x), a) by inductive defn of o},

By inductive hypothesis: Y = dy(s, x) = d3,(s, x)

Thus 6y,(s, xa) = Upcydy(p,a) = dm(Y, a) by definition of dm.

Chandra Chekuri (UIUC) CS/ECE 374 15 Fall 2018 15 / 31

Proof continued
For every string w, dy(s, w) = d;y,(s’, w). \

Inductive step: w = xa (Note: suffix definition of strings)
On (s, xa) = Upesz(s,x)On (P> @) by inductive defn of &y,
Or(s’yxa) = 6M(5M(s x), a) by inductive defn of éy,

By inductive hypothesis: Y = dy(s, x) = d3,(s, x)
Thus 6y,(s, xa) = Upcydy(p,a) = dm(Y, a) by definition of dm.
Therefore,

on(s,xa) = om(Y,a) = om(dy,(s, x),a) = d5,(s’, xa)
which is what we need.

Chandra Chekuri (UIUC) CS/ECE 374 15 Fall 2018 15 / 31

Part 1l

Closure Properties of Regular

Languages

CS/ECE 374 Fall 2018 16 / 31

Regular Languages

Regular languages have three different characterizations

@ Inductive definition via base cases and closure under union,
concatenation and Kleene star

@ Languages accepted by DFAs

@ Languages accepted by NFAs

Chandra Chekuri (UIUC) CS/ECE 374 17 Fall 2018 17 / 31

Regular Languages

Regular languages have three different characterizations
@ Inductive definition via base cases and closure under union,
concatenation and Kleene star
@ Languages accepted by DFAs
@ Languages accepted by NFAs

Regular language closed under many operations:

@ union, concatenation, Kleene star via inductive definition or
NFAs

@ complement, union, intersection via DFAs
@ homomorphism, inverse homomorphism, reverse, ...

Different representations allow for flexibility in proofs

Chandra Chekuri (UIUC) CS/ECE 374 17 Fall 2018 17 / 31

Examples: PREFIX and SUFFIX

Let L be a language over X.

Definition
PREFIX(L) = {w | wx € L,x € *}

Definition
SUFFIX(L) = {w | xw € L,x € X*}

Chandra Chekuri (UIUC) CS/ECE 374 18 Fall 2018 18 / 31

Examples: PREFIX and SUFFIX

Let L be a language over X.

Definition
PREFIX(L) = {w | wx € L,x € *}

Definition
SUFFIX(L) = {w | xw € L,x € X*}

If L is regular then PREFIX(L) is regular. \
If L is regular then SUFFIX(L) is regular. \

Chandra Chekuri (UIUC) CS/ECE 374 18 Fall 2018 18 / 31

PREFIX

Let M = (Q, X, d, s, A) be a DFA that recognizes L

Create new DFA/NFA to accept PREFIX(L) (or SUFFIX(L)).

Chandra Chekuri (UIUC) CS/ECE 374 Fall 2018 19 / 31

PREFIX

Let M = (Q, X, d, s, A) be a DFA that recognizes L
Create new DFA/NFA to accept PREFIX(L) (or SUFFIX(L)).

X ={q € Q| s can reach q in M}
Y = {q € Q | g can reach some state in A}

Z=XNY
Consider DFA M’ = (Q, %, 8, s, Z). L(M’) = PREFIX(L). \
)
— o,/

\)

Chandra Chekuri (UIUC) CS/ECE 374 19 Fall 2018 19 / 31

SUFFIX

Let M = (Q, X, d, s, A) be a DFA that recognizes L

X ={q € Q| s can reach q in M}

w ~ %

"
S

Chandra Chekuri (UIUC) CS/ECE 374 pi Fall 2018 20 / 31

SUFFIX

Let M = (Q, X, d, s, A) be a DFA that recognizes L
X ={q € Q| s can reach q in M}

Consider NFA N = (QU {s'}, X, ¢’,s’, A). Add new start state s’
and e-transition from s’ to each state in X.

Fall 2018 20 /

SUFFIX

Let M = (Q, X, d, s, A) be a DFA that recognizes L
X ={q € Q| s can reach q in M}

Consider NFA N = (QU {s'}, X, ¢’,s’, A). Add new start state s’
and e-transition from s’ to each state in X.

Claim: L(N) = SUFFIX(L).

Chandra Chekuri (UIUC) CS/ECE 374 pi Fall 2018 20 / 31

Part |11

DFA to Regular Expressions

CS/ECE 374 2 Fall 2018 21 /31

DFA to Regular Expressions

Given a DFA M = (Q, X, 4, s, A) there is a regular expression r
such that L(r) = L(M). That is, regular expressions are as powerful
as DFAs (and hence also NFAs).

@ Simple algorithm but formal proof is involved. See notes.

@ An easier proof via a more involved algorithm later in course.

Chandra Chekuri (UIUC) CS/ECE 374 22 Fall 2018 22 /31

Stage 0: Input

Chandra Chekuri (UIUC) CS/ECE 374 Fall 2018 23 /31

Stage 1. Normalizing

Chandra Chekuri (UIUC) Fall 2018 24 /31

Stage 2: Remove state A

D€ A

in

Chandra Chekuri (UIUC) CS/ECE 374 Fall 2018 25 /31

Stage 4. Redrawn without old edges

Chandra Chekuri (UIUC) CS/ECE 374 Fall 2018 26 / 31

Stage 4. Removing B

Chandra Chekuri (UIUC) CS/ECE 374 Fall 2018 27 /31

Stage 5: Redraw

Chandra Chekuri (UIUC) CS/ECE 374 Fall 2018 28 / 31

Stage 6: Removing C

(ab*a+b)(a+b) e

Chandra Chekuri (UIUC) CS/ECE 374 Fall 2018 29 /31

@ (ab*a+b)(a+b)"

Chandra Chekuri (UIUC) CS/ECE 374 Fall 2018 30 /31

Stage 8: Extract regular expression
@ (ab*a+Db)(a+b)

Thus, this automata is equivalent to the regular expression

(ab*a + b)(a + b)*.

Chandra Chekuri (UIUC) CS/ECE 374 Fall 2018 31/31

	Equivalence of NFAs and DFAs
	Closure Properties of Regular Languages
	DFA to Regular Expressions

