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Regular Languages, DFAs, NFAs

Theorem
Languages accepted by DFAs, NFAs, and regular expressions are the
same.

Question: Is every language a regular language?

No.

Each DFA M can be represented as a string over a finite
alphabet Σ by appropriate encoding. Or think of regular
expressions which are easy to view as strings.

Hence number of regular languages is countably infinite

Number of languages is uncountably infinite

Hence there must be a non-regular language!
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A Simple and Canonical Non-regular Language

L = {0k1k | i ≥ 0} = {ε, 01, 0011, 000111, · · · , }

Theorem
L is not regular.

Question: Proof?

Intution: Any program to recognize L seems to require counting
number of zeros in input which cannot be done with fixed memory.

How do we formalize intuition and come up with a formal proof?
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Proof by Contradiction

Suppose L is regular. Then there is a DFA M such that
L(M) = L.

Let M = (Q, {0, 1}, δ, s,A) where |Q| = n.

Consider strings ε, 0, 00, 000, · · · , 0n total of n + 1 strings.

What is the behavior of M on these strings? Let qi = δ∗(s, 0i).

By pigeon hole principle qi = qj for some 0 ≤ i < j ≤ n.
That is, M is in the same state after reading 0i and 0j where
i 6= j .

M should accept 0i1i but then it will also accept 0j1i where i 6= j .
This contradicts the fact that M accepts L. Thus, there is no DFA
for L.
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Generalizing the argument

Definition
For a language L over Σ and two strings x, y ∈ Σ∗ we say that x
and y are distinguishable with respect to L if there is a string
w ∈ Σ∗ such that exactly one of xw , yw is in L. In other words
either x ∈ L, y 6∈ L or x 6∈ L, y ∈ L.

x, y are indistinguishable with respect to L if there is no such w .

Example: If i 6= j , 0i and 0j are distinguishable with respect to
L = {0k1k | k ≥ 0}

Example: 000 and 0000 are indistinguishable with respect to the
language L = {w | w has 00 as a substring}
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Wee Lemma

Lemma
Suppose L = L(M) for some DFA M = (Q,Σ, δ, s,A) and
suppose x, y are distinguishable with respect to L. Then
δ∗(s, x) 6= δ∗(s, y).

Proof.
Since x, y are distinguishable let w be the distinguishing suffix. If
δ∗(s, x) = δ∗(s, y) then M will either accept both the strings
xw , yw , or reject both. But exactly one of them is in L, a
contradiction.
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Fooling Sets

Definition
For a language L over Σ a set of strings F (could be infinite) is a
fooling set or distinguishing set for L if every pair of distinct strings
x, y ∈ F are distinguishable.

Example: F = {0i | i ≥ 0} is a fooling set for the language
L = {0k1k | k ≥ 0}.

Theorem
Suppose F is a fooling set for L. If F is finite then there is no DFA
M that accepts L with less than |F | states.
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Proof of Theorem

Theorem
Suppose F is a fooling set for L. If F is finite then there is no DFA
M that accepts L with less than |F | states.

Proof.
Suppose there is a DFA M = (Q,Σ, δ, s,A) that accepts L. Let
|Q| = n.

If n < |F | then by pigeon hole principle there are two strings
x, y ∈ F , x 6= y such that δ∗(s, x) = δ∗(s, y) but x, y are
distinguishable.
Implies that there is w such that exaclty one of xw , yw is in L.
However, M ’s behaviour on xw and yw is exacly the same and hence
M will accept both xw , yw or reject both. A contradiction.
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Infinite Fooling Sets

Theorem
Suppose F is a fooling set for L. If F is finite then there is no DFA
M that accepts L with less than |F | states.

Corollary
If L has an infinite fooling set F then L is not regular.

Proof.
Suppose for contradiction that L = L(M) for some DFA M with n
states.
Any subset F ′ of F is a fooling set. (Why?) Pick F ′ ⊆ F arbitrarily
such that |F ′| > n. By preceding theorem, we obtain a
contradiction.
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Examples

{0k1k | k ≥ 0}

{bitstrings with equal number of 0s and 1s}
{0k1` | k 6= `}
{0k2 | k ≥ 0}
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Exponential gap between NFA and DFA size

Lk = {w ∈ {0, 1}∗ | w has a 1 k positions from the end}

Recall that Lk is accepted by a NFA N with k + 1 states.

Theorem
Every DFA that accepts Lk has at least 2k states.

Claim
F = {w ∈ {0, 1}∗ : |w | = k} is a fooling set of size 2k for Lk .

Why?

Suppose a1a2 . . . ak and b1b2 . . . bk are two distinct bitstrings
of length k
Let i be first index where ai 6= bi

y = 0k−i−1 is a distinguishing suffix for the two strings
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How do pick a fooling set

How do we pick a fooling set F?

If x, y are in F and x 6= y they should be distinguishable! Of
course.

All strings in F except maybe one should be prefixes of strings in
the language L.
For example if L = {0k1k | k ≥ 0} do not pick 1 and 10
(say). Why?
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Part I

Non-regularity via closure properties
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Non-regularity via closure properties

L = {bitstrings with equal number of 0s and 1s}

L′ = {0k1k | k ≥ 0}

Suppose we have already shown that L′ is non-regular. Can we show
that L is non-regular without using the fooling set argument from
scratch?

L′ = L ∩ L(0∗1∗)
Claim: The above and the fact that L′ is non-regular implies L is
non-regular. Why?

Suppose L is regular. Then since L(0∗1∗) is regular, and regular
languages are closed under intersection, L′ also would be regular. But
we know L′ is not regular, a contradiction.
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Non-regularity via closure properties

General recipe:

Apply 
closure 
properties

L1

L2

Ln

L?

Lnon-regular
KNOWN 
REGULAR

UNKNOWN
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Proving non-regularity: Summary

DFAs have fixed memory. Any language that requires memory
that grows with input size is not regular. Not always easy to tell!

Method of distinguishing suffixes. To prove that L is non-regular
find an infinite fooling set.

Closure properties. Use existing non-regular languages and
regular languages to prove that some new language is
non-regular.

Pumping lemma. We did not cover it but it is sometimes an
easier proof technique to apply, but not as general as the fooling
set technique.
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Part II

Myhill-Nerode Theorem
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Indistinguishability

Recall:

Definition
For a language L over Σ and two strings x, y ∈ Σ∗ we say that x
and y are distinguishable with respect to L if there is a string
w ∈ Σ∗ such that exactly one of xw , yw is in L. x, y are
indistinguishable with respect to L if there is no such w .

Given language L over Σ define a relation ≡L over strings in Σ∗ as
follows: x ≡L y iff x and y are indistinguishable with respect to L.

Claim
≡L is an equivalence relation over Σ∗.

Therefore, ≡L partitions Σ∗ into a collection of equivalence classes
X1,X2, . . . ,
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Claim
≡L is an equivalence relation over Σ∗.

Therefore, ≡L partitions Σ∗ into a collection of equivalence classes.

Claim
Let x, y be two distinct strings. If x, y belong to the same
equivalence class of ≡L then x, y are indistinguishable. Otherwise
they are distinguishable.

Corollary
If ≡L is finite with n equivalence classes then there is a fooling set F
of size n for L. If ≡L is infinite then there is an infinite fooling set for
L.
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Myhill-Nerode Theorem

Theorem (Myhill-Nerode)

L is is regular if and only if ≡L has a finite number of equivalence
classes. If ≡L is finite with n equivalence classes then there is a DFA
M accepting L with exactly n states and this is the minimum
possible.

Corollary
A language L is non-regular if and only if there is an infinite fooling
set F for L.

Algorithmic implication: For every DFA M one can find in
polynomial time a DFA M ′ such that L(M) = L(M ′) and M ′ has
the fewest possible states among all such DFAs.

Chandra Chekuri (UIUC) CS/ECE 374 20 Fall 2018 20 / 20


	Non-regularity via closure properties
	Myhill-Nerode Theorem

