
CS/ECE 374: Algorithms & Models of

Computation, Fall 2018

Context Free Languages and
Grammars
Lecture 7
September 18, 2018

Nikita Borisov (UIUC) CS/ECE 374 1 Fall 2018 1 / 37

Regular Languages

Regular expressions allow us to describe/express a class of
languages compactly and precisely.

Equivalence with DFAs show the following: given any regular
expression r there is a very efficient algorithm for solving the
language recognition problem for L(r): given w ∈ Σ∗ is
w ∈ L(r)?

In fact the running time of the algorithm is linear in
|w |.

Disadvantage of regular expressions/languages: too simple and
cannot express interesting features such as balanced parenthesis that
we need in programming languages. No recursion allowed even in
limited form.

Nikita Borisov (UIUC) CS/ECE 374 2 Fall 2018 2 / 37

Regular Languages

Regular expressions allow us to describe/express a class of
languages compactly and precisely.

Equivalence with DFAs show the following: given any regular
expression r there is a very efficient algorithm for solving the
language recognition problem for L(r): given w ∈ Σ∗ is
w ∈ L(r)? In fact the running time of the algorithm is linear in
|w |.

Disadvantage of regular expressions/languages: too simple and
cannot express interesting features such as balanced parenthesis that
we need in programming languages. No recursion allowed even in
limited form.

Nikita Borisov (UIUC) CS/ECE 374 2 Fall 2018 2 / 37

Regular Languages

Regular expressions allow us to describe/express a class of
languages compactly and precisely.

Equivalence with DFAs show the following: given any regular
expression r there is a very efficient algorithm for solving the
language recognition problem for L(r): given w ∈ Σ∗ is
w ∈ L(r)? In fact the running time of the algorithm is linear in
|w |.

Disadvantage of regular expressions/languages:

too simple and
cannot express interesting features such as balanced parenthesis that
we need in programming languages. No recursion allowed even in
limited form.

Nikita Borisov (UIUC) CS/ECE 374 2 Fall 2018 2 / 37

Regular Languages

Regular expressions allow us to describe/express a class of
languages compactly and precisely.

Equivalence with DFAs show the following: given any regular
expression r there is a very efficient algorithm for solving the
language recognition problem for L(r): given w ∈ Σ∗ is
w ∈ L(r)? In fact the running time of the algorithm is linear in
|w |.

Disadvantage of regular expressions/languages: too simple and
cannot express interesting features such as balanced parenthesis that
we need in programming languages. No recursion allowed even in
limited form.

Nikita Borisov (UIUC) CS/ECE 374 2 Fall 2018 2 / 37

Language classes: Chomsky Hierarchy

Generative models for languages based on grammars.

Regular

Context Free

Context Sensitive

Recursively Enumerable

All

Nikita Borisov (UIUC) CS/ECE 374 3 Fall 2018 3 / 37

Chomsky Hierarchy and Machines

For each class one can define a corresponding class of machines.

Regular

Context Free

Context Sensitive

Recursively Enumerable

All

DFA

PDA

TM

LBA

Nikita Borisov (UIUC) CS/ECE 374 4 Fall 2018 4 / 37

Programming Language Design

Question: What is a valid C program? Or a Python program?

Question: Given a string w what is an algorithm to check whether
w is a valid C program? The parsing problem.

Nikita Borisov (UIUC) CS/ECE 374 5 Fall 2018 5 / 37

Context Free Languages and Grammars

Programming Language Specification

Parsing

Natural language understanding

Generative model giving structure

. . .

CFLs provide a good balance between expressivity and tractability.
Limited form of recursion.

Nikita Borisov (UIUC) CS/ECE 374 6 Fall 2018 6 / 37

Programming Languages

Nikita Borisov (UIUC) CS/ECE 374 7 Fall 2018 7 / 37

Natural Language Processing

Nikita Borisov (UIUC) CS/ECE 374 8 Fall 2018 8 / 37

Models of Growth

L-systems

http://www.kevs3d.co.uk/dev/lsystems/

Nikita Borisov (UIUC) CS/ECE 374 9 Fall 2018 9 / 37

http://www.kevs3d.co.uk/dev/lsystems/

Kolam drawing generated by grammar

Nikita Borisov (UIUC) CS/ECE 374 10 Fall 2018 10 / 37

Context Free Grammar (CFG) Definition

Definition
A CFG is is a quadruple G = (V ,T ,P, S)

V is a finite set of non-terminal symbols

T is a finite set of terminal symbols (alphabet)

P is a finite set of productions, each of the form
A→ α
where A ∈ V and α is a string in (V ∪ T)∗.
Formally, P ⊂ V × (V ∪ T)∗.

S ∈ V is a start symbol

Nikita Borisov (UIUC) CS/ECE 374 11 Fall 2018 11 / 37

Context Free Grammar (CFG) Definition

Definition
A CFG is is a quadruple G = (V ,T ,P, S)

V is a finite set of non-terminal symbols

T is a finite set of terminal symbols (alphabet)

P is a finite set of productions, each of the form
A→ α
where A ∈ V and α is a string in (V ∪ T)∗.
Formally, P ⊂ V × (V ∪ T)∗.

S ∈ V is a start symbol

Nikita Borisov (UIUC) CS/ECE 374 11 Fall 2018 11 / 37

Context Free Grammar (CFG) Definition

Definition
A CFG is is a quadruple G = (V ,T ,P, S)

V is a finite set of non-terminal symbols

T is a finite set of terminal symbols (alphabet)

P is a finite set of productions, each of the form
A→ α
where A ∈ V and α is a string in (V ∪ T)∗.
Formally, P ⊂ V × (V ∪ T)∗.

S ∈ V is a start symbol

Nikita Borisov (UIUC) CS/ECE 374 11 Fall 2018 11 / 37

Context Free Grammar (CFG) Definition

Definition
A CFG is is a quadruple G = (V ,T ,P, S)

V is a finite set of non-terminal symbols

T is a finite set of terminal symbols (alphabet)

P is a finite set of productions, each of the form
A→ α
where A ∈ V and α is a string in (V ∪ T)∗.
Formally, P ⊂ V × (V ∪ T)∗.

S ∈ V is a start symbol

Nikita Borisov (UIUC) CS/ECE 374 11 Fall 2018 11 / 37

Example

V = {S}
T = {a, b}
P = {S → ε | a | b | aSa | bSb}
(abbrev. for S → ε, S → a, S → b, S → aSa, S → bSb)

S aSA abSba abbSBba abbba

What strings can S generate like this?

Nikita Borisov (UIUC) CS/ECE 374 12 Fall 2018 12 / 37

Example

V = {S}
T = {a, b}
P = {S → ε | a | b | aSa | bSb}
(abbrev. for S → ε, S → a, S → b, S → aSa, S → bSb)

S aSA abSba abbSBba abbba

What strings can S generate like this?

Nikita Borisov (UIUC) CS/ECE 374 12 Fall 2018 12 / 37

Example

V = {S}
T = {a, b}
P = {S → ε | a | b | aSa | bSb}
(abbrev. for S → ε, S → a, S → b, S → aSa, S → bSb)

S aSA abSba abbSBba abbba

What strings can S generate like this?

Nikita Borisov (UIUC) CS/ECE 374 12 Fall 2018 12 / 37

Palindromes

Madam in Eden I’m Adam

Dog doo? Good God!

Dogma: I am God.

A man, a plan, a canal, Panama

Are we not drawn onward, we few, drawn onward to new era?

Doc, note: I dissent. A fast never prevents a fatness. I diet on
cod.

http://www.palindromelist.net

Nikita Borisov (UIUC) CS/ECE 374 13 Fall 2018 13 / 37

http://www.palindromelist.net

Example

L = {0n1n | n ≥ 0}

S → ε | 0S1

Nikita Borisov (UIUC) CS/ECE 374 14 Fall 2018 14 / 37

Example

L = {0n1n | n ≥ 0}

S → ε | 0S1

Nikita Borisov (UIUC) CS/ECE 374 14 Fall 2018 14 / 37

Notation and Convention

Let G = (V ,T ,P, S) then

a, b, c, d , . . . , in T (terminals)

A,B,C ,D, . . . , in V (non-terminals)

u, v ,w , x, y , . . . in T ∗ for strings of terminals

α, β, γ, . . . in (V ∪ T)∗

X ,Y ,Z in V ∪ T

Nikita Borisov (UIUC) CS/ECE 374 15 Fall 2018 15 / 37

“Derives” relation

Formalism for how strings are derived/generated

Definition
Let G = (V ,T ,P, S) be a CFG. For strings α1, α2 ∈ (V ∪ T)∗

we say α1 derives α2 denoted by α1 G α2 if there exist strings
β, γ, δ in (V ∪ T)∗ such that

α1 = βAδ
α2 = βγδ

A→ γ is in P.

Examples: S ε, S 0S1, 0S1 00S11, 0S1 01.

Nikita Borisov (UIUC) CS/ECE 374 16 Fall 2018 16 / 37

“Derives” relation continued

Definition
For integer k ≥ 0, α1 k α2 inductive defined:

α1 0 α2 if α1 = α2

α1 k α2 if α1 β1 and β1 k−1 α2.

Alternative defn: α1 k α2 if α1 k−1 β1 and β1 α2

 ∗ is the reflexive and transitive closure of .

α1 ∗ α2 if α1 k α2 for some k .

Examples: S ∗ ε, 0S1 ∗ 0000011111.

Nikita Borisov (UIUC) CS/ECE 374 17 Fall 2018 17 / 37

“Derives” relation continued

Definition
For integer k ≥ 0, α1 k α2 inductive defined:

α1 0 α2 if α1 = α2

α1 k α2 if α1 β1 and β1 k−1 α2.

Alternative defn: α1 k α2 if α1 k−1 β1 and β1 α2

 ∗ is the reflexive and transitive closure of .

α1 ∗ α2 if α1 k α2 for some k .

Examples: S ∗ ε, 0S1 ∗ 0000011111.

Nikita Borisov (UIUC) CS/ECE 374 17 Fall 2018 17 / 37

“Derives” relation continued

Definition
For integer k ≥ 0, α1 k α2 inductive defined:

α1 0 α2 if α1 = α2

α1 k α2 if α1 β1 and β1 k−1 α2.

Alternative defn: α1 k α2 if α1 k−1 β1 and β1 α2

 ∗ is the reflexive and transitive closure of .

α1 ∗ α2 if α1 k α2 for some k .

Examples: S ∗ ε, 0S1 ∗ 0000011111.

Nikita Borisov (UIUC) CS/ECE 374 17 Fall 2018 17 / 37

Context Free Languages

Definition
The language generated by CFG G = (V ,T ,P, S) is denoted by
L(G) where L(G) = {w ∈ T ∗ | S ∗ w}.

Definition
A language L is context free (CFL) if it is generated by a context free
grammar. That is, there is a CFG G such that L = L(G).

Nikita Borisov (UIUC) CS/ECE 374 18 Fall 2018 18 / 37

Context Free Languages

Definition
The language generated by CFG G = (V ,T ,P, S) is denoted by
L(G) where L(G) = {w ∈ T ∗ | S ∗ w}.

Definition
A language L is context free (CFL) if it is generated by a context free
grammar. That is, there is a CFG G such that L = L(G).

Nikita Borisov (UIUC) CS/ECE 374 18 Fall 2018 18 / 37

Examples

L = {0n1n | n ≥ 0}

L = {0n1m | m > n}

L = {0n1m | m < n}

L = {w ∈ {(,)}∗ | w is properly nested string of parenthesis}

L = {w ∈ {0, 1}∗ | w has twice as many 1s as 0’s}

Nikita Borisov (UIUC) CS/ECE 374 19 Fall 2018 19 / 37

Examples

L = {0n1n | n ≥ 0}

L = {0n1m | m > n}

L = {0n1m | m < n}

L = {w ∈ {(,)}∗ | w is properly nested string of parenthesis}

L = {w ∈ {0, 1}∗ | w has twice as many 1s as 0’s}

Nikita Borisov (UIUC) CS/ECE 374 19 Fall 2018 19 / 37

Examples

L = {0n1n | n ≥ 0}

L = {0n1m | m > n}

L = {0n1m | m < n}

L = {w ∈ {(,)}∗ | w is properly nested string of parenthesis}

L = {w ∈ {0, 1}∗ | w has twice as many 1s as 0’s}

Nikita Borisov (UIUC) CS/ECE 374 19 Fall 2018 19 / 37

Examples

L = {0n1n | n ≥ 0}

L = {0n1m | m > n}

L = {0n1m | m < n}

L = {w ∈ {(,)}∗ | w is properly nested string of parenthesis}

L = {w ∈ {0, 1}∗ | w has twice as many 1s as 0’s}

Nikita Borisov (UIUC) CS/ECE 374 19 Fall 2018 19 / 37

Examples

L = {0n1n | n ≥ 0}

L = {0n1m | m > n}

L = {0n1m | m < n}

L = {w ∈ {(,)}∗ | w is properly nested string of parenthesis}

L = {w ∈ {0, 1}∗ | w has twice as many 1s as 0’s}

Nikita Borisov (UIUC) CS/ECE 374 19 Fall 2018 19 / 37

Closure Properties of CFLs

G1 = (V1,T ,P1, S1) and G2 = (V2,T ,P2, S2)
Assumption: V1 ∩ V2 = ∅, that is, non-terminals are not shared

Theorem
CFLs are closed under union. L1, L2 CFLs implies L1 ∪ L2 is a CFL.

Theorem
CFLs are closed under concatenation. L1, L2 CFLs implies L1·L2 is a
CFL.

Theorem
CFLs are closed under Kleene star. L CFL implies L∗ is a CFL.

Nikita Borisov (UIUC) CS/ECE 374 20 Fall 2018 20 / 37

Closure Properties of CFLs

G1 = (V1,T ,P1, S1) and G2 = (V2,T ,P2, S2)
Assumption: V1 ∩ V2 = ∅, that is, non-terminals are not shared

Theorem
CFLs are closed under union. L1, L2 CFLs implies L1 ∪ L2 is a CFL.

Theorem
CFLs are closed under concatenation. L1, L2 CFLs implies L1·L2 is a
CFL.

Theorem
CFLs are closed under Kleene star. L CFL implies L∗ is a CFL.

Nikita Borisov (UIUC) CS/ECE 374 20 Fall 2018 20 / 37

Closure Properties of CFLs

G1 = (V1,T ,P1, S1) and G2 = (V2,T ,P2, S2)
Assumption: V1 ∩ V2 = ∅, that is, non-terminals are not shared

Theorem
CFLs are closed under union. L1, L2 CFLs implies L1 ∪ L2 is a CFL.

Theorem
CFLs are closed under concatenation. L1, L2 CFLs implies L1·L2 is a
CFL.

Theorem
CFLs are closed under Kleene star. L CFL implies L∗ is a CFL.

Nikita Borisov (UIUC) CS/ECE 374 20 Fall 2018 20 / 37

Closure Properties of CFLs

G1 = (V1,T ,P1, S1) and G2 = (V2,T ,P2, S2)
Assumption: V1 ∩ V2 = ∅, that is, non-terminals are not shared

Theorem
CFLs are closed under union. L1, L2 CFLs implies L1 ∪ L2 is a CFL.

Theorem
CFLs are closed under concatenation. L1, L2 CFLs implies L1·L2 is a
CFL.

Theorem
CFLs are closed under Kleene star. L CFL implies L∗ is a CFL.

Nikita Borisov (UIUC) CS/ECE 374 20 Fall 2018 20 / 37

Closure Properties of CFLs

G1 = (V1,T ,P1, S1) and G2 = (V2,T ,P2, S2)
Assumption: V1 ∩ V2 = ∅, that is, non-terminals are not shared

Theorem
CFLs are closed under union. L1, L2 CFLs implies L1 ∪ L2 is a CFL.

Theorem
CFLs are closed under concatenation. L1, L2 CFLs implies L1·L2 is a
CFL.

Theorem
CFLs are closed under Kleene star. L CFL implies L∗ is a CFL.

Nikita Borisov (UIUC) CS/ECE 374 20 Fall 2018 20 / 37

Exercise

Prove that every regular language is context-free using previous
closure properties.

Prove the set of regular expressions over an alphabet Σ forms a
non-regular language which is context-free.

Nikita Borisov (UIUC) CS/ECE 374 21 Fall 2018 21 / 37

Closure Properties of CFLs continued

Theorem
CFLs are not closed under complement or intersection.

Theorem
If L1 is a CFL and L2 is regular then L1 ∩ L2 is a CFL.

Nikita Borisov (UIUC) CS/ECE 374 22 Fall 2018 22 / 37

Canonical non-CFL

Theorem
L = {anbncn | n ≥ 0} is not context-free.

Proof based on pumping lemma for CFLs. Technical and outside the
scope of this class.

Nikita Borisov (UIUC) CS/ECE 374 23 Fall 2018 23 / 37

Parse Trees or Derivation Trees

A tree to represent the derivation S ∗ w .

Rooted tree with root labeled S
Non-terminals at each internal node of tree

Terminals at leaves

Children of internal node indicate how non-terminal was
expanded using a production rule

A picture is worth a thousand words

Nikita Borisov (UIUC) CS/ECE 374 24 Fall 2018 24 / 37

Parse Trees or Derivation Trees

A tree to represent the derivation S ∗ w .

Rooted tree with root labeled S
Non-terminals at each internal node of tree

Terminals at leaves

Children of internal node indicate how non-terminal was
expanded using a production rule

A picture is worth a thousand words

Nikita Borisov (UIUC) CS/ECE 374 24 Fall 2018 24 / 37

Example

S	à aSb | bSa | SS	| ab| ba |	ε

S è aSb è abSab è abSSab è abbaSab è abbaab

A corresponding derivation of abbaab

S

S ba

S ab

S S

b a ε

A derivation tree for abbaab
(also called “parse tree”)

Nikita Borisov (UIUC) CS/ECE 374 25 Fall 2018 25 / 37

Ambiguity in CFLs

Definition
A CFG G is ambiguous if there is a string w ∈ L(G) with two
different parse trees. If there is no such string then G is
unambiguous.

Example: S → S − S | 1 | 2 | 3

S

S

S

S– – SS

–S S–S S3

2 1 3 2

1

3–(2–1) (3–2)–1
Nikita Borisov (UIUC) CS/ECE 374 26 Fall 2018 26 / 37

Ambiguity in CFLs

Original grammar: S → S − S | 1 | 2 | 3
Unambiguous grammar:
S → S − C | 1 | 2 | 3
C → 1 | 2 | 3

S

S – C

–S C

3 2

1

(3–2)–1

The grammar forces a parse
corresponding to left-to-right
evaluation.

Nikita Borisov (UIUC) CS/ECE 374 27 Fall 2018 27 / 37

Inherently ambiguous languages

Definition
A CFL L is inherently ambiguous if there is no unambiguous CFG G
such that L = L(G).

There exist inherently ambiguous CFLs.
Example: L = {anbmck | n = m or m = k}
Given a grammar G it is undecidable to check whether L(G) is
inherently ambiguous. No algorithm!

Nikita Borisov (UIUC) CS/ECE 374 28 Fall 2018 28 / 37

Inherently ambiguous languages

Definition
A CFL L is inherently ambiguous if there is no unambiguous CFG G
such that L = L(G).

There exist inherently ambiguous CFLs.
Example: L = {anbmck | n = m or m = k}

Given a grammar G it is undecidable to check whether L(G) is
inherently ambiguous. No algorithm!

Nikita Borisov (UIUC) CS/ECE 374 28 Fall 2018 28 / 37

Inherently ambiguous languages

Definition
A CFL L is inherently ambiguous if there is no unambiguous CFG G
such that L = L(G).

There exist inherently ambiguous CFLs.
Example: L = {anbmck | n = m or m = k}
Given a grammar G it is undecidable to check whether L(G) is
inherently ambiguous. No algorithm!

Nikita Borisov (UIUC) CS/ECE 374 28 Fall 2018 28 / 37

Inductive proofs for CFGs

Question: How do we formally prove that a CFG L(G) = L?

Example: S → ε | a | b | aSa | bSb

Theorem
L(G) = {palindromes} = {w | w = wR}

Two directions:

L(G) ⊆ L, that is, S ∗ w then w = wR

L ⊆ L(G), that is, w = wR then S ∗ w

Nikita Borisov (UIUC) CS/ECE 374 29 Fall 2018 29 / 37

Inductive proofs for CFGs

Question: How do we formally prove that a CFG L(G) = L?

Example: S → ε | a | b | aSa | bSb

Theorem
L(G) = {palindromes} = {w | w = wR}

Two directions:

L(G) ⊆ L, that is, S ∗ w then w = wR

L ⊆ L(G), that is, w = wR then S ∗ w

Nikita Borisov (UIUC) CS/ECE 374 29 Fall 2018 29 / 37

L(G) ⊆ L

Show that if S ∗ w then w = wR

By induction on length of derivation, meaning
For all k ≥ 1, S ∗k w implies w = wR .

If S 1 w then w = ε or w = a or w = b. Each case
w = wR .

Assume that for all k < n, that if S →k w then w = wR

Let S n w (with n > 1). Wlog w begin with a.

Then S → aSa k−1 aua where w = aua.
And S n−1 u and hence IH, u = uR .
Therefore w r = (aua)R = (ua)Ra = auRa = aua = w .

Nikita Borisov (UIUC) CS/ECE 374 30 Fall 2018 30 / 37

L(G) ⊆ L

Show that if S ∗ w then w = wR

By induction on length of derivation, meaning
For all k ≥ 1, S ∗k w implies w = wR .

If S 1 w then w = ε or w = a or w = b. Each case
w = wR .

Assume that for all k < n, that if S →k w then w = wR

Let S n w (with n > 1). Wlog w begin with a.

Then S → aSa k−1 aua where w = aua.
And S n−1 u and hence IH, u = uR .
Therefore w r = (aua)R = (ua)Ra = auRa = aua = w .

Nikita Borisov (UIUC) CS/ECE 374 30 Fall 2018 30 / 37

L ⊆ L(G)

Show that if w = wR then S ∗ w .

By induction on |w |
That is, for all k ≥ 0, |w | = k and w = wR implies S ∗ w .

Exercise: Fill in proof.

Nikita Borisov (UIUC) CS/ECE 374 31 Fall 2018 31 / 37

Mutual Induction

Situation is more complicated with grammars that have multiple
non-terminals.

See Section 5.3.2 of the notes for an example proof.

Nikita Borisov (UIUC) CS/ECE 374 32 Fall 2018 32 / 37

Normal Forms

Normal forms are a way to restrict form of production rules

Advantage: Simpler/more convenient algorithms and proofs

Two standard normal forms for CFGs

Chomsky normal form

Greibach normal form

Nikita Borisov (UIUC) CS/ECE 374 33 Fall 2018 33 / 37

Normal Forms

Normal forms are a way to restrict form of production rules

Advantage: Simpler/more convenient algorithms and proofs

Two standard normal forms for CFGs

Chomsky normal form

Greibach normal form

Nikita Borisov (UIUC) CS/ECE 374 33 Fall 2018 33 / 37

Normal Forms

Chomsky Normal Form:

Productions are all of the form A→ BC or A→ a.
If ε ∈ L then S → ε is also allowed.

Every CFG G can be converted into CNF form via an efficient
algorithm

Advantage: parse tree of constant degree.

Greiback Normal Form:

Only productions of the form A→ aβ are allowed.

All CFLs without ε have a grammar in GNF. Efficient algorithm.

Advantage: Every derivation adds exactly one terminal.

Nikita Borisov (UIUC) CS/ECE 374 34 Fall 2018 34 / 37

Normal Forms

Chomsky Normal Form:

Productions are all of the form A→ BC or A→ a.
If ε ∈ L then S → ε is also allowed.

Every CFG G can be converted into CNF form via an efficient
algorithm

Advantage: parse tree of constant degree.

Greiback Normal Form:

Only productions of the form A→ aβ are allowed.

All CFLs without ε have a grammar in GNF. Efficient algorithm.

Advantage: Every derivation adds exactly one terminal.

Nikita Borisov (UIUC) CS/ECE 374 34 Fall 2018 34 / 37

Language recognition for CFLs

Algorithmic question: Given CFG G and string w ∈ Σ∗ is
w ∈ L(G)?

Later in course: algorithm for above problem that runs in O(|w |3)
time for any fixed grammar G . Via dynamic programming.

Hence parsing problem for programming languages is solvable.
However cubic time algorithm is too slow! For this reason grammars
for PLs are restricted even further to make parsing algorithm faster
(essentially linear time) — see CS 421 and compiler courses.

In programming languages some amount of “context” may be
necessary. But CSL recognition is undecidable (no algorithm)! Hence
people use ad hoc methods for the limited needs in PLs.

Nikita Borisov (UIUC) CS/ECE 374 35 Fall 2018 35 / 37

Language recognition for CFLs

Algorithmic question: Given CFG G and string w ∈ Σ∗ is
w ∈ L(G)?

Later in course: algorithm for above problem that runs in O(|w |3)
time for any fixed grammar G . Via dynamic programming.

Hence parsing problem for programming languages is solvable.
However cubic time algorithm is too slow! For this reason grammars
for PLs are restricted even further to make parsing algorithm faster
(essentially linear time) — see CS 421 and compiler courses.

In programming languages some amount of “context” may be
necessary. But CSL recognition is undecidable (no algorithm)! Hence
people use ad hoc methods for the limited needs in PLs.

Nikita Borisov (UIUC) CS/ECE 374 35 Fall 2018 35 / 37

Things to know: Pushdown Automata

PDA: a NFA coupled with a stack

PDAs and CFGs are equivalent: both generate exactly CFLs.
PDA is a machine-centric view of CFLs. Helps prove that the
intersection of a CFL and a regular language is a CFL.

Nikita Borisov (UIUC) CS/ECE 374 36 Fall 2018 36 / 37

Chomsky Hierarchy

See Wikipedia article for more on Chomsky Hierarchy including the
grammar rules for Context Sensitive Languages etc.
https://en.wikipedia.org/wiki/Chomsky_hierarchy

Nikita Borisov (UIUC) CS/ECE 374 37 Fall 2018 37 / 37

https://en.wikipedia.org/wiki/Chomsky_hierarchy

