CS/ECE 374: Algorithms & Models of Computation, Fall 2018

Kartsuba's Algorithm and Linear Time Selection

Lecture 11 October 4, 2018

Part I

Fast Multiplication

Multiplying Numbers

Problem Given two n-digit numbers x and y, compute their product.

Grade School Multiplication

Compute "partial product" by multiplying each digit of y with x and adding the partial products.

 $3141 \\ \times 2718 \\ \hline 25128 \\ 3141 \\ 21987 \\ \underline{6282} \\ 8537238$

3

Time Analysis of Grade School Multiplication

- **1** Each partial product: $\Theta(n)$
- 2 Number of partial products: $\Theta(n)$
- **3** Addition of partial products: $\Theta(n^2)$
- **1** Total time: $\Theta(n^2)$

A Trick of Gauss

Carl Friedrich Gauss: 1777-1855 "Prince of Mathematicians"

Observation: Multiply two complex numbers: (a + bi) and (c + di)

$$(a+bi)(c+di) = ac - bd + (ad+bc)i$$

A Trick of Gauss

Carl Friedrich Gauss: 1777-1855 "Prince of Mathematicians"

Observation: Multiply two complex numbers: (a + bi) and (c + di)(a + bi)(c + di) = ac - bd + (ad + bc)i

How many multiplications do we need?

A Trick of Gauss

Carl Friedrich Gauss: 1777–1855 "Prince of Mathematicians"

Observation: Multiply two complex numbers: (a + bi) and (c + di)

$$(a+bi)(c+di) = ac - bd + (ad + bc)i$$

How many multiplications do we need?

Only 3! If we do extra additions and subtractions. Compute ac, bd, (a + b)(c + d). Then (ad + bc) = (a + b)(c + d) - ac - bd

Divide and Conquer

Assume n is a power of 2 for simplicity and numbers are in decimal.

Split each number into two numbers with equal number of digits

- $x = 10^{n/2} x_L + x_R$ where $x_L = x_{n-1} \dots x_{n/2}$ and $x_R = x_{n/2-1} \dots x_0$
- \bigcirc Similarly $y=10^{n/2}y_L+y_R$ where $y_L=y_{n-1}\dots y_{n/2}$ and $y_R=y_{n/2-1}\dots y_0$

Example

$$1234 \times 5678 = (100 \times 12 + 34) \times (100 \times 56 + 78)$$

$$= 10000 \times 12 \times 56$$

$$+100 \times (12 \times 78 + 34 \times 56)$$

$$+34 \times 78$$

Divide and Conquer

Assume n is a power of 2 for simplicity and numbers are in decimal.

- ② $x = 10^{n/2} x_L + x_R$ where $x_L = x_{n-1} \dots x_{n/2}$ and $x_R = x_{n/2-1} \dots x_0$
- $y = 10^{n/2} y_L + y_R$ where $y_L = y_{n-1} \dots y_{n/2}$ and $y_R = y_{n/2-1} \dots y_0$

Therefore

$$xy = (10^{n/2}x_L + x_R)(10^{n/2}y_L + y_R)$$

= $10^n x_L y_L + 10^{n/2}(x_L y_R + x_R y_L) + x_R y_R$

$$xy = (10^{n/2}x_L + x_R)(10^{n/2}y_L + y_R)$$

= $10^n x_L y_L + 10^{n/2}(x_L y_R + x_R y_L) + x_R y_R$

4 recursive multiplications of number of size n/2 each plus 4 additions and left shifts (adding enough 0's to the right)

$$xy = (10^{n/2}x_L + x_R)(10^{n/2}y_L + y_R)$$

= $10^n x_L y_L + 10^{n/2}(x_L y_R + x_R y_L) + x_R y_R$

4 recursive multiplications of number of size n/2 each plus 4 additions and left shifts (adding enough 0's to the right)

$$T(n) = 4T(n/2) + O(n)$$
 $T(1) = O(1)$

$$\frac{1}{2} \frac{1}{2} \frac{1}$$

$$xy = (10^{n/2}x_L + x_R)(10^{n/2}y_L + y_R)$$

= $10^n x_L y_L + 10^{n/2}(x_L y_R + x_R y_L) + x_R y_R$

4 recursive multiplications of number of size n/2 each plus 4 additions and left shifts (adding enough 0's to the right)

$$T(n) = 4T(n/2) + O(n)$$
 $T(1) = O(1)$

 $T(n) = \Theta(n^2)$. No better than grade school multiplication!

$$xy = (10^{n/2}x_L + x_R)(10^{n/2}y_L + y_R)$$

= $10^n x_L y_L + 10^{n/2}(x_L y_R + x_R y_L) + x_R y_R$

4 recursive multiplications of number of size n/2 each plus 4 additions and left shifts (adding enough 0's to the right)

$$T(n) = 4T(n/2) + O(n)$$
 $T(1) = O(1)$

 $T(n) = \Theta(n^2)$. No better than grade school multiplication!

Can we invoke Gauss's trick here?

$$xy = (10^{n/2}x_L + x_R)(10^{n/2}y_L + y_R)$$

= $10^n x_L y_L + 10^{n/2}(x_L y_R + x_R y_L) + x_R y_R$

Gauss trick:
$$x_L y_R + x_R y_L = (x_L + x_R)(y_L + y_R) - x_L y_L - x_R y_R$$

$$xy = (10^{n/2}x_L + x_R)(10^{n/2}y_L + y_R)$$

= $10^n x_L y_L + 10^{n/2}(x_L y_R + x_R y_L) + x_R y_R$

Gauss trick:
$$x_L y_R + x_R y_L = (x_L + x_R)(y_L + y_R) - x_L y_L - x_R y_R$$

Recursively compute only $x_L y_L$, $x_R y_R$, $(x_L + x_R)(y_L + y_R)$.

$$xy = (10^{n/2}x_L + x_R)(10^{n/2}y_L + y_R)$$

= $10^n x_L y_L + 10^{n/2}(x_L y_R + x_R y_L) + x_R y_R$

Gauss trick:
$$x_L y_R + x_R y_L = (x_L + x_R)(y_L + y_R) - x_L y_L - x_R y_R$$

Recursively compute only $x_L y_L$, $x_R y_R$, $(x_L + x_R)(y_L + y_R)$.

Time Analysis

Running time is given by

$$T(n) = 3T(n/2) + O(n)$$
 $T(1) = O(1)$

which means

$$xy = (10^{n/2}x_L + x_R)(10^{n/2}y_L + y_R)$$

= $10^n x_L y_L + 10^{n/2}(x_L y_R + x_R y_L) + x_R y_R$

Gauss trick:
$$x_L y_R + x_R y_L = (x_L + x_R)(y_L + y_R) - x_L y_L - x_R y_R$$

Recursively compute only $x_L y_L$, $x_R y_R$, $(x_L + x_R)(y_L + y_R)$.

Time Analysis

Running time is given by

$$T(n) = 3T(n/2) + O(n)$$
 $T(1) = O(1)$

which means $T(n) = O(n^{\log_2 3}) = O(n^{1.585})$

State of the Art

Schönhage-Strassen 1971: $O(n \log n \log \log n)$ time using Fast-Fourier-Transform (FFT)

Martin Fürer 2007: $O(n \log n2^{O(\log^* n)})$ time

Conjecture

There is an $O(n \log n)$ time algorithm.

Analyzing the Recurrences

- Basic divide and conquer: T(n) = 4T(n/2) + O(n), T(1) = 1. Claim: $T(n) = \Theta(n^2)$.
- Saving a multiplication: T(n) = 3T(n/2) + O(n), T(1) = 1. Claim: $T(n) = \Theta(n^{1+\log 1.5})$

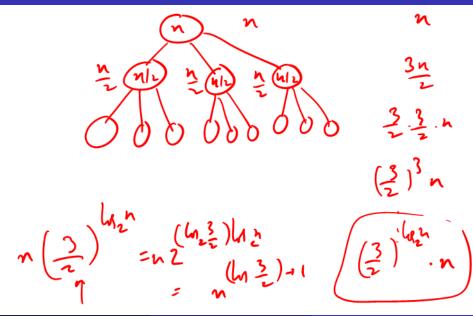
Analyzing the Recurrences

- Basic divide and conquer: T(n) = 4T(n/2) + O(n), T(1) = 1. Claim: $T(n) = \Theta(n^2)$.
- Saving a multiplication: T(n) = 3T(n/2) + O(n), T(1) = 1. Claim: $T(n) = \Theta(n^{1 + \log 1.5})$

Use recursion tree method:

- 1 In both cases, depth of recursion $L = \log n$.
- ② Work at depth i is $4^{i}n/2^{i}$ and $3^{i}n/2^{i}$ respectively: number of children at depth i times the work at each child
- **3** Total work is therefore $n \sum_{i=0}^{L} 2^{i}$ and $n \sum_{i=0}^{L} (3/2)^{i}$ respectively.

Recursion tree analysis



Part II

Selecting in Unsorted Lists

Rank of element in an array

A: an unsorted array of n integers

Definition

For $1 \le j \le n$, element of rank j is the j'th smallest element in A.

Unsorted array	16	14	34	20	12	5	3	19	11
Ranks	6	5	9	8	4	2	1	7	3
Sort of array	3	5	11	19	14	16	10	20	2/

Problem - Selection

Input Unsorted array A of n integers and integer jGoal Find the jth smallest number in A (rank j number)

Median: $j = \lfloor (n+1)/2 \rfloor$

Problem - Selection

Input Unsorted array A of n integers and integer jGoal Find the jth smallest number in A (rank j number)

Median:
$$j = \lfloor (n+1)/2 \rfloor$$

Simplifying assumption for sake of notation: elements of \boldsymbol{A} are distinct

Algorithm I

- Sort the elements in A
- Pick jth element in sorted order

Time taken = $O(n \log n)$

Algorithm I

- Sort the elements in A
- Pick jth element in sorted order

Time taken = $O(n \log n)$

Do we need to sort? Is there an O(n) time algorithm?

Algorithm II

If j is small or n-j is small then

- Find j smallest/largest elements in A in O(jn) time. (How?)
- ② Time to find median is $O(n^2)$.

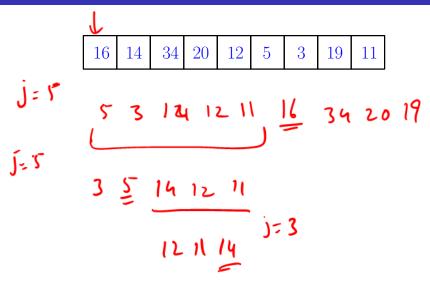
Divide and Conquer Approach

- Pick a pivot element a from A
- 2 Partition A based on a.

$$A_{\mathrm{less}} = \{x \in A \mid x \le a\} \text{ and } A_{\mathrm{greater}} = \{x \in A \mid x > a\}$$

- $|A_{less}| = j: return a$
- ullet $|A_{\mathrm{less}}| > j$: recursively find jth smallest element in A_{less}
- $|A_{less}| < j$: recursively find kth smallest element in $A_{greater}$ where $k = j |A_{less}|$.

Example



- Partitioning step: O(n) time to scan A
- How do we choose pivot? Recursive running time?

- Partitioning step: O(n) time to scan A
- Output
 <p

Suppose we always choose pivot to be A[1].

- Partitioning step: O(n) time to scan A
- 4 How do we choose pivot? Recursive running time?

Suppose we always choose pivot to be A[1].

Say A is sorted in increasing order and j = n. Exercise: show that algorithm takes $\Omega(n^2)$ time

A Better Pivot

Suppose pivot is the ℓ th smallest element where $n/4 \leq \ell \leq 3n/4$. That is pivot is approximately in the middle of A Then $n/4 \leq |A_{\text{less}}| \leq 3n/4$ and $n/4 \leq |A_{\text{greater}}| \leq 3n/4$. If we apply recursion,

Suppose pivot is the ℓ th smallest element where $n/4 \le \ell \le 3n/4$. That is pivot is approximately in the middle of A

Then $n/4 \le |A_{less}| \le 3n/4$ and $n/4 \le |A_{greater}| \le 3n/4$. If we apply recursion,

$$T(n) \leq T(3n/4) + O(n)$$

Suppose pivot is the ℓ th smallest element where $n/4 \le \ell \le 3n/4$. That is pivot is approximately in the middle of A. Then $n/4 \le |A_{less}| \le 3n/4$ and $n/4 \le |A_{greater}| \le 3n/4$. If we apply recursion,

$$T(n) \leq T(3n/4) + O(n)$$

Implies T(n) = O(n)!

How do we find such a pivot?

Suppose pivot is the ℓ th smallest element where $n/4 \le \ell \le 3n/4$. That is pivot is approximately in the middle of A. Then $n/4 \le |A_{less}| \le 3n/4$ and $n/4 \le |A_{greater}| \le 3n/4$. If we apply recursion,

$$T(n) \leq T(3n/4) + O(n)$$

Implies T(n) = O(n)!

How do we find such a pivot? Randomly?

Suppose pivot is the ℓ th smallest element where $n/4 \le \ell \le 3n/4$. That is pivot is approximately in the middle of A. Then $n/4 \le |A_{\text{less}}| \le 3n/4$ and $n/4 \le |A_{\text{greater}}| \le 3n/4$. If we apply recursion,

$$T(n) \leq T(3n/4) + O(n)$$

Implies T(n) = O(n)!

How do we find such a pivot? Randomly? In fact works! Analysis a little bit later.

Suppose pivot is the ℓ th smallest element where $n/4 \le \ell \le 3n/4$. That is pivot is approximately in the middle of A Then $n/4 \le |A_{\text{less}}| \le 3n/4$ and $n/4 \le |A_{\text{greater}}| \le 3n/4$. If we apply recursion,

$$T(n) \leq T(3n/4) + O(n)$$

Implies T(n) = O(n)!

How do we find such a pivot? Randomly? In fact works! Analysis a little bit later.

Can we choose pivot deterministically?

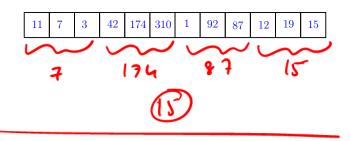
Divide and Conquer Approach

A game of medians

Idea

- **1** Break input A into many subarrays: $L_1, \ldots L_k$.
- ② Find median m_i in each subarray L_i .
- **3** Find the median x of the medians m_1, \ldots, m_k .
- Intuition: The median x should be close to being a good median of all the numbers in A.
- Use x as pivot in previous algorithm.

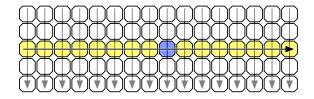
Example



1173112 15 42 1749287

Example

11 7 3 42 174 310	1 92	87 12	19 15
-------------------	------	-------	-------



Choosing the pivot

A clash of medians

- **1** Partition array A into $\lceil n/5 \rceil$ lists of **5** items each. $L_1 = \{A[1], A[2], \ldots, A[5]\}, L_2 = \{A[6], \ldots, A[10]\}, \ldots, L_i = \{A[5i+1], \ldots, A[5i-4]\}, \ldots, L_{\lceil n/5 \rceil} = \{A[5\lceil n/5\rceil 4, \ldots, A[n]\}.$
- ② For each i find median b_i of L_i using brute-force in O(1) time. Total O(n) time
- **3** Let $B = \{b_1, b_2, \dots, b_{\lceil n/5 \rceil}\}$
- Find median b of B

Choosing the pivot

A clash of medians

- **1** Partition array A into $\lceil n/5 \rceil$ lists of S items each. $L_1 = \{A[1], A[2], \ldots, A[5]\}, L_2 = \{A[6], \ldots, A[10]\}, \ldots, L_i = \{A[5i+1], \ldots, A[5i-4]\}, \ldots, L_{\lceil n/5 \rceil} = \{A[5\lceil n/5 \rceil 4, \ldots, A[n]\}.$
- ② For each i find median b_i of L_i using brute-force in O(1) time. Total O(n) time
- $\bullet \ \mathsf{Let} \ B = \{b_1, b_2, \dots, b_{\lceil n/5 \rceil}\}$
- Find median b of B

Lemma

Median of **B** is an approximate median of **A**. That is, if **b** is used a pivot to partition **A**, then $|A_{less}| \leq 7n/10 + 6$ and $|A_{greater}| < 7n/10 + 6$.

A storm of medians

```
 \begin{array}{l} \textbf{select}(A,\ j) \colon \\ & \textbf{Form lists}\ L_1, L_2, \dots, L_{\lceil n/5 \rceil} \ \text{where}\ L_i = \{A[5i-4], \dots, A[5i]\} \\ & \textbf{Find median}\ b_i \ \text{of each}\ L_i \ \text{using brute-force} \\ & \textbf{Find median}\ b \ \text{of}\ B = \{b_1, b_2, \dots, b_{\lceil n/5 \rceil}\} \\ & \textbf{Partition}\ A \ \text{into}\ A_{\text{less}} \ \text{and}\ A_{\text{greater}} \ \text{using}\ b \ \text{as pivot} \\ & \textbf{if}\ (|A_{\text{less}}|) = j \ \text{return}\ b \\ & \textbf{else}\ \textbf{if}\ (|A_{\text{less}}|) > j) \\ & \textbf{return select}(A_{\text{less}},\ j) \\ & \textbf{else} \\ & \textbf{return select}(A_{\text{greater}},\ j - |A_{\text{less}}|) \end{array}
```

A storm of medians

```
 \begin{array}{l} \textbf{select}(A,\ j): \\ & \textbf{Form lists}\ L_1, L_2, \dots, L_{\lceil n/5 \rceil} \ \text{where}\ L_i = \{A[5i-4], \dots, A[5i]\} \\ & \textbf{Find median}\ b_i \ \text{of each}\ L_i \ \text{using brute-force} \\ & \textbf{Find median}\ b \ \text{of}\ B = \{b_1, b_2, \dots, b_{\lceil n/5 \rceil}\} \\ & \textbf{Partition}\ A \ \text{into}\ A_{\text{less}} \ \text{and}\ A_{\text{greater}} \ \text{using}\ b \ \text{as pivot} \\ & \textbf{if}\ (|A_{\text{less}}|) = j \ \text{return}\ b \\ & \textbf{else}\ \textbf{if}\ (|A_{\text{less}}|) > j) \\ & \textbf{return select}(A_{\text{less}},\ j) \\ & \textbf{else} \\ & \textbf{return select}(A_{\text{greater}},\ j - |A_{\text{less}}|) \\ \end{array}
```

How do we find median of B?

A storm of medians

```
 \begin{array}{l} \textbf{select}(\pmb{A}, \ \pmb{j}) \colon \\ & \textbf{Form lists} \ L_1, L_2, \dots, L_{\lceil n/5 \rceil} \ \text{where} \ L_i = \{\pmb{A}[5i-4], \dots, \pmb{A}[5i]\} \\ & \textbf{Find median} \ \pmb{b}_i \ \text{of each} \ L_i \ \text{using brute-force} \\ & \textbf{Find median} \ \pmb{b} \ \text{of} \ \pmb{B} = \{\pmb{b}_1, \pmb{b}_2, \dots, \pmb{b}_{\lceil n/5 \rceil}\} \\ & \textbf{Partition} \ \pmb{A} \ \text{into} \ \pmb{A}_{\text{less}} \ \text{and} \ \pmb{A}_{\text{greater}} \ \text{using} \ \pmb{b} \ \text{as pivot} \\ & \textbf{if} \ (|\pmb{A}_{\text{less}}|) = \pmb{j} \ \text{return} \ \pmb{b} \\ & \textbf{else} \ \textbf{if} \ (|\pmb{A}_{\text{less}}|) > \pmb{j}) \\ & \textbf{return select}(\pmb{A}_{\text{less}}, \ \pmb{j}) \\ & \textbf{else} \\ & \textbf{return select}(\pmb{A}_{\text{greater}}, \ \pmb{j} - |\pmb{A}_{\text{less}}|) \end{array}
```

How do we find median of B? Recursively!

A storm of medians

```
 \begin{array}{l} \text{select}(A,\ j)\colon \\ & \text{Form lists } L_1, L_2, \dots, L_{\lceil n/5 \rceil} \text{ where } L_i = \{A[5i-4], \dots, A[5i]\} \\ & \text{Find median } b_i \text{ of each } L_i \text{ using brute-force} \\ & B = [b_1, b_2, \dots, b_{\lceil n/5 \rceil}] \\ & b = \text{select}(B,\ \lceil n/10 \rceil) \\ & \text{Partition } A \text{ into } A_{\text{less}} \text{ and } A_{\text{greater}} \text{ using } b \text{ as pivot} \\ & \text{if } (|A_{\text{less}}|) = j \text{ return } b \\ & \text{else if } (|A_{\text{less}}|) > j) \\ & \text{return select}(A_{\text{less}},\ j) \\ & \text{else} \\ & \text{return select}(A_{\text{greater}},\ j - |A_{\text{less}}|) \\ \end{array}
```

Running time of deterministic median selection

A dance with recurrences

$$T(n) \le T(\lceil n/5 \rceil) + \max\{T(|A_{\text{less}}|), T(|A_{\text{greater}})|\} + O(n)$$

Running time of deterministic median selection

A dance with recurrences

$$T(n) \le T(\lceil n/5 \rceil) + \max\{T(|A_{\text{less}}|), T(|A_{\text{greater}})|\} + O(n)$$

From Lemma,

$$T(n) \leq T(\lceil n/5 \rceil) + T(\lceil 7n/10 + 6 \rceil) + O(n)$$

and

$$T(n) = O(1) \qquad n < 10$$

Running time of deterministic median selection

A dance with recurrences

$$T(n) \le T(\lceil n/5 \rceil) + \max\{T(|A_{less}|), T(|A_{greater})|\} + O(n)$$

From Lemma,

$$T(n) \leq T(\lceil n/5 \rceil) + T(\lfloor 7n/10 + 6 \rfloor) + O(n)$$

and

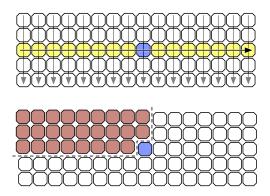
$$T(n) = O(1) \qquad n < 10$$

Exercise: show that T(n) = O(n)

Median of Medians: Proof of Lemma

Proposition

There are at least 3n/10 - 6 elements smaller than the median of medians **b**.



Median of Medians: Proof of Lemma

Proposition

There are at least 3n/10-6 elements smaller than the median of medians **b**.

Proof.

At least half of the $\lfloor n/5 \rfloor$ groups have at least 3 elements smaller than b, except for the group containing b which has 2 elements smaller than b. Hence number of elements smaller than b is:

$$3\lfloor \frac{\lfloor n/5\rfloor + 1}{2} \rfloor - 1 \geq 3n/10 - 6$$

Median of Medians: Proof of Lemma

Proposition

There are at least 3n/10-6 elements smaller than the median of medians **b**.

Corollary

$$|A_{greater}| \leq 7n/10 + 6.$$

Via symmetric argument,

Corollary

$$|A_{less}| \leq 7n/10 + 6.$$

Questions to ponder

- Why did we choose lists of size 5? Will lists of size 3 work?
- ② Write a recurrence to analyze the algorithm's running time if we choose a list of size k.

Median of Medians Algorithm

Due to:

M. Blum, R. Floyd, D. Knuth, V. Pratt, R. Rivest, and R. Tarjan. "Time bounds for selection".

Journal of Computer System Sciences (JCSS), 1973.

Median of Medians Algorithm

Due to:

M. Blum, R. Floyd, D. Knuth, V. Pratt, R. Rivest, and R. Tarjan. "Time bounds for selection".

Journal of Computer System Sciences (JCSS), 1973.

How many Turing Award winners in the author list?

Median of Medians Algorithm

Due to:

M. Blum, R. Floyd, D. Knuth, V. Pratt, R. Rivest, and R. Tarjan. "Time bounds for selection".

Journal of Computer System Sciences (JCSS), 1973.

How many Turing Award winners in the author list? All except Vaughn Pratt!

Takeaway Points

- Recursion tree method and guess and verify are the most reliable methods to analyze recursions in algorithms.
- Recursive algorithms naturally lead to recurrences.
- Some times one can look for certain type of recursive algorithms (reverse engineering) by understanding recurrences and their behavior.