
CS/ECE 374: Algorithms & Models of

Computation, Fall 2018

Dynamic Programming
Lecture 13
October 11, 2018

Chandra Chekuri (UIUC) CS/ECE 374 1 Fall 2018 1 / 32

Dynamic Programming

Dynamic Programming is smart recursion plus memoization

Question: Suppose we have a recursive program foo(x) that takes
an input x .

On input of size n the number of distinct sub-problems that
foo(x) generates is at most A(n)

foo(x) spends at most B(n) time not counting the time for its
recursive calls.

Suppose we memoize the recursion.
Assumption: Storing and retrieving solutions to pre-computed
problems takes O(1) time. Recursion tree evaluated in preorder/DFS
fashion
Question: What is an upper bound on the running time of
memoized version of foo(x) if |x| = n? O(A(n)B(n)).

Chandra Chekuri (UIUC) CS/ECE 374 2 Fall 2018 2 / 32

Dynamic Programming

Dynamic Programming is smart recursion plus memoization

Question: Suppose we have a recursive program foo(x) that takes
an input x .

On input of size n the number of distinct sub-problems that
foo(x) generates is at most A(n)

foo(x) spends at most B(n) time not counting the time for its
recursive calls.

Suppose we memoize the recursion.
Assumption: Storing and retrieving solutions to pre-computed
problems takes O(1) time. Recursion tree evaluated in preorder/DFS
fashion
Question: What is an upper bound on the running time of
memoized version of foo(x) if |x| = n? O(A(n)B(n)).

Chandra Chekuri (UIUC) CS/ECE 374 2 Fall 2018 2 / 32

Dynamic Programming

Dynamic Programming is smart recursion plus memoization

Question: Suppose we have a recursive program foo(x) that takes
an input x .

On input of size n the number of distinct sub-problems that
foo(x) generates is at most A(n)

foo(x) spends at most B(n) time not counting the time for its
recursive calls.

Suppose we memoize the recursion.
Assumption: Storing and retrieving solutions to pre-computed
problems takes O(1) time. Recursion tree evaluated in preorder/DFS
fashion

Question: What is an upper bound on the running time of
memoized version of foo(x) if |x| = n? O(A(n)B(n)).

Chandra Chekuri (UIUC) CS/ECE 374 2 Fall 2018 2 / 32

Dynamic Programming

Dynamic Programming is smart recursion plus memoization

Question: Suppose we have a recursive program foo(x) that takes
an input x .

On input of size n the number of distinct sub-problems that
foo(x) generates is at most A(n)

foo(x) spends at most B(n) time not counting the time for its
recursive calls.

Suppose we memoize the recursion.
Assumption: Storing and retrieving solutions to pre-computed
problems takes O(1) time. Recursion tree evaluated in preorder/DFS
fashion
Question: What is an upper bound on the running time of
memoized version of foo(x) if |x| = n?

O(A(n)B(n)).

Chandra Chekuri (UIUC) CS/ECE 374 2 Fall 2018 2 / 32

Dynamic Programming

Dynamic Programming is smart recursion plus memoization

Question: Suppose we have a recursive program foo(x) that takes
an input x .

On input of size n the number of distinct sub-problems that
foo(x) generates is at most A(n)

foo(x) spends at most B(n) time not counting the time for its
recursive calls.

Suppose we memoize the recursion.
Assumption: Storing and retrieving solutions to pre-computed
problems takes O(1) time. Recursion tree evaluated in preorder/DFS
fashion
Question: What is an upper bound on the running time of
memoized version of foo(x) if |x| = n? O(A(n)B(n)).

Chandra Chekuri (UIUC) CS/ECE 374 2 Fall 2018 2 / 32

Example: Fibonacci recurrence

Chandra Chekuri (UIUC) CS/ECE 374 3 Fall 2018 3 / 32

Part I

Checking if string is in Kleene star of a
language

Chandra Chekuri (UIUC) CS/ECE 374 4 Fall 2018 4 / 32

Problem

Input A string w ∈ Σ∗ and access to a language L ⊆ Σ∗ via
function IsStrInL(string x) that decides whether x is
in L

Goal Decide if w ∈ L∗ using IsStrInL(string x) as a black
box sub-routine

Example
Suppose L is English and we have a procedure to check whether a
string/word is in the English dictionary.

Is the string “isthisanenglishsentence” in English∗?

Is “stampstamp” in English∗?

Is “zibzzzad” in English∗?

Chandra Chekuri (UIUC) CS/ECE 374 5 Fall 2018 5 / 32

Recursive Solution

When is w ∈ L∗?

w ∈ L∗ iff w = ε or w ∈ L or w = uv where u ∈ L and v ∈ L∗

and |u| ≥ 1

Assume w is stored in array A[1..n]

IsStringinLstar(A[1..n]):
If (n = 0) Output YES

If (IsStrInL(A[1..n]))
Output YES

Else

For (i = 1 to n − 1) do

If (IsStrInL(A[1..i]) and IsStrInLstar(A[i + 1..n]))
Output YES

Output NO

Chandra Chekuri (UIUC) CS/ECE 374 6 Fall 2018 6 / 32

Recursive Solution

When is w ∈ L∗?

w ∈ L∗ iff w = ε or w ∈ L or w = uv where u ∈ L and v ∈ L∗

and |u| ≥ 1

Assume w is stored in array A[1..n]

IsStringinLstar(A[1..n]):
If (n = 0) Output YES

If (IsStrInL(A[1..n]))
Output YES

Else

For (i = 1 to n − 1) do

If (IsStrInL(A[1..i]) and IsStrInLstar(A[i + 1..n]))
Output YES

Output NO

Chandra Chekuri (UIUC) CS/ECE 374 6 Fall 2018 6 / 32

Recursive Solution

When is w ∈ L∗?

w ∈ L∗ iff w = ε or w ∈ L or w = uv where u ∈ L and v ∈ L∗

and |u| ≥ 1

Assume w is stored in array A[1..n]

IsStringinLstar(A[1..n]):
If (n = 0) Output YES

If (IsStrInL(A[1..n]))
Output YES

Else

For (i = 1 to n − 1) do

If (IsStrInL(A[1..i]) and IsStrInLstar(A[i + 1..n]))
Output YES

Output NO

Chandra Chekuri (UIUC) CS/ECE 374 6 Fall 2018 6 / 32

Recursive Solution

Assume w is stored in array A[1..n]

IsStringinLstar(A[1..n]):
If (n = 0) Output YES

If (IsStrInL(A[1..n]))
Output YES

Else

For (i = 1 to n − 1) do

If (IsStrInL(A[1..i]) and IsStrInLstar(A[i + 1..n]))
Output YES

Output NO

Question: How many distinct sub-problems does
IsStrInLstar(A[1..n]) generate? O(n)

Chandra Chekuri (UIUC) CS/ECE 374 7 Fall 2018 7 / 32

Recursive Solution

Assume w is stored in array A[1..n]

IsStringinLstar(A[1..n]):
If (n = 0) Output YES

If (IsStrInL(A[1..n]))
Output YES

Else

For (i = 1 to n − 1) do

If (IsStrInL(A[1..i]) and IsStrInLstar(A[i + 1..n]))
Output YES

Output NO

Question: How many distinct sub-problems does
IsStrInLstar(A[1..n]) generate?

O(n)

Chandra Chekuri (UIUC) CS/ECE 374 7 Fall 2018 7 / 32

Recursive Solution

Assume w is stored in array A[1..n]

IsStringinLstar(A[1..n]):
If (n = 0) Output YES

If (IsStrInL(A[1..n]))
Output YES

Else

For (i = 1 to n − 1) do

If (IsStrInL(A[1..i]) and IsStrInLstar(A[i + 1..n]))
Output YES

Output NO

Question: How many distinct sub-problems does
IsStrInLstar(A[1..n]) generate? O(n)

Chandra Chekuri (UIUC) CS/ECE 374 7 Fall 2018 7 / 32

Example

Consider string samiam

Chandra Chekuri (UIUC) CS/ECE 374 8 Fall 2018 8 / 32

Naming subproblems and recursive equation

After seeing that number of subproblems is O(n) we name them to
help us understand the structure better.

ISL(i): a boolean which is 1 if A[i ..n] is in L∗, 0 otherwise

Base case: ISL(n + 1) = 1 interpreting A[n + 1..n] as ε

Recursive relation:

ISL(i) = 1 if ∃i < j ≤ n + 1 such that (ISL(j) = 1 and
IsStrInL(A[i ..(j − 1]) = 1)

ISL(i) = 0 otherwise

Alternatively: ISL(i) = maxi<j≤n+1 ISL(i)IsStrInL(A[i ..(j − 1]))
Output: ISL(1)

Chandra Chekuri (UIUC) CS/ECE 374 9 Fall 2018 9 / 32

Naming subproblems and recursive equation

After seeing that number of subproblems is O(n) we name them to
help us understand the structure better.

ISL(i): a boolean which is 1 if A[i ..n] is in L∗, 0 otherwise

Base case: ISL(n + 1) = 1 interpreting A[n + 1..n] as ε
Recursive relation:

ISL(i) = 1 if ∃i < j ≤ n + 1 such that (ISL(j) = 1 and
IsStrInL(A[i ..(j − 1]) = 1)

ISL(i) = 0 otherwise

Alternatively: ISL(i) = maxi<j≤n+1 ISL(i)IsStrInL(A[i ..(j − 1]))

Output: ISL(1)

Chandra Chekuri (UIUC) CS/ECE 374 9 Fall 2018 9 / 32

Naming subproblems and recursive equation

After seeing that number of subproblems is O(n) we name them to
help us understand the structure better.

ISL(i): a boolean which is 1 if A[i ..n] is in L∗, 0 otherwise

Base case: ISL(n + 1) = 1 interpreting A[n + 1..n] as ε
Recursive relation:

ISL(i) = 1 if ∃i < j ≤ n + 1 such that (ISL(j) = 1 and
IsStrInL(A[i ..(j − 1]) = 1)

ISL(i) = 0 otherwise

Alternatively: ISL(i) = maxi<j≤n+1 ISL(i)IsStrInL(A[i ..(j − 1]))
Output: ISL(1)

Chandra Chekuri (UIUC) CS/ECE 374 9 Fall 2018 9 / 32

Removing recursion to obtain iterative algorithm

Typically, after finding a dynamic programming recursion, we often
convert the recursive algorithm into an iterative algorithm via explicit
memoization and bottom up computation.

Why?

Mainly for further optimization of running time and space.

How?

First, allocate a data structure (usually an array or a
multi-dimensional array that can hold values for each of the
subproblems)

Figure out a way to order the computation of the sub-problems
starting from the base case.

Caveat: Dynamic programming is not about filling tables. It
is about finding a smart recursion. First, find the correct
recursion.

Chandra Chekuri (UIUC) CS/ECE 374 10 Fall 2018 10 / 32

Removing recursion to obtain iterative algorithm

Typically, after finding a dynamic programming recursion, we often
convert the recursive algorithm into an iterative algorithm via explicit
memoization and bottom up computation.

Why? Mainly for further optimization of running time and space.

How?

First, allocate a data structure (usually an array or a
multi-dimensional array that can hold values for each of the
subproblems)

Figure out a way to order the computation of the sub-problems
starting from the base case.

Caveat: Dynamic programming is not about filling tables. It
is about finding a smart recursion. First, find the correct
recursion.

Chandra Chekuri (UIUC) CS/ECE 374 10 Fall 2018 10 / 32

Removing recursion to obtain iterative algorithm

Typically, after finding a dynamic programming recursion, we often
convert the recursive algorithm into an iterative algorithm via explicit
memoization and bottom up computation.

Why? Mainly for further optimization of running time and space.

How?

First, allocate a data structure (usually an array or a
multi-dimensional array that can hold values for each of the
subproblems)

Figure out a way to order the computation of the sub-problems
starting from the base case.

Caveat: Dynamic programming is not about filling tables. It
is about finding a smart recursion. First, find the correct
recursion.

Chandra Chekuri (UIUC) CS/ECE 374 10 Fall 2018 10 / 32

Removing recursion to obtain iterative algorithm

Typically, after finding a dynamic programming recursion, we often
convert the recursive algorithm into an iterative algorithm via explicit
memoization and bottom up computation.

Why? Mainly for further optimization of running time and space.

How?

First, allocate a data structure (usually an array or a
multi-dimensional array that can hold values for each of the
subproblems)

Figure out a way to order the computation of the sub-problems
starting from the base case.

Caveat: Dynamic programming is not about filling tables. It
is about finding a smart recursion. First, find the correct
recursion.

Chandra Chekuri (UIUC) CS/ECE 374 10 Fall 2018 10 / 32

Iterative Algorithm

IsStringinLstar-Iterative(A[1..n]):
boolean ISL[1..(n + 1)]
ISL[n + 1] = TRUE
for (i = n down to 1)

ISL[i] = FALSE
for (j = i + 1 to n + 1)

If (ISL[j] and IsStrInL(A[i ..j − 1]))
ISL[i] = TRUE
Break

If (ISL[1] = 1) Output YES

Else Output NO

Running time: O(n2) (assuming call to IsStrInL is O(1)
time)

Space: O(n)

Chandra Chekuri (UIUC) CS/ECE 374 11 Fall 2018 11 / 32

Iterative Algorithm

IsStringinLstar-Iterative(A[1..n]):
boolean ISL[1..(n + 1)]
ISL[n + 1] = TRUE
for (i = n down to 1)

ISL[i] = FALSE
for (j = i + 1 to n + 1)

If (ISL[j] and IsStrInL(A[i ..j − 1]))
ISL[i] = TRUE
Break

If (ISL[1] = 1) Output YES

Else Output NO

Running time:

O(n2) (assuming call to IsStrInL is O(1)
time)

Space: O(n)

Chandra Chekuri (UIUC) CS/ECE 374 11 Fall 2018 11 / 32

Iterative Algorithm

IsStringinLstar-Iterative(A[1..n]):
boolean ISL[1..(n + 1)]
ISL[n + 1] = TRUE
for (i = n down to 1)

ISL[i] = FALSE
for (j = i + 1 to n + 1)

If (ISL[j] and IsStrInL(A[i ..j − 1]))
ISL[i] = TRUE
Break

If (ISL[1] = 1) Output YES

Else Output NO

Running time: O(n2) (assuming call to IsStrInL is O(1)
time)

Space: O(n)

Chandra Chekuri (UIUC) CS/ECE 374 11 Fall 2018 11 / 32

Iterative Algorithm

IsStringinLstar-Iterative(A[1..n]):
boolean ISL[1..(n + 1)]
ISL[n + 1] = TRUE
for (i = n down to 1)

ISL[i] = FALSE
for (j = i + 1 to n + 1)

If (ISL[j] and IsStrInL(A[i ..j − 1]))
ISL[i] = TRUE
Break

If (ISL[1] = 1) Output YES

Else Output NO

Running time: O(n2) (assuming call to IsStrInL is O(1)
time)

Space:

O(n)

Chandra Chekuri (UIUC) CS/ECE 374 11 Fall 2018 11 / 32

Iterative Algorithm

IsStringinLstar-Iterative(A[1..n]):
boolean ISL[1..(n + 1)]
ISL[n + 1] = TRUE
for (i = n down to 1)

ISL[i] = FALSE
for (j = i + 1 to n + 1)

If (ISL[j] and IsStrInL(A[i ..j − 1]))
ISL[i] = TRUE
Break

If (ISL[1] = 1) Output YES

Else Output NO

Running time: O(n2) (assuming call to IsStrInL is O(1)
time)

Space: O(n)

Chandra Chekuri (UIUC) CS/ECE 374 11 Fall 2018 11 / 32

Example

Consider string samiam

Chandra Chekuri (UIUC) CS/ECE 374 12 Fall 2018 12 / 32

Part II

Longest Increasing Subsequence

Chandra Chekuri (UIUC) CS/ECE 374 13 Fall 2018 13 / 32

Sequences

Definition
Sequence: an ordered list a1, a2, . . . , an. Length of a sequence is
number of elements in the list.

Definition
ai1, . . . , aik is a subsequence of a1, . . . , an if
1 ≤ i1 < i2 < . . . < ik ≤ n.

Definition
A sequence is increasing if a1 < a2 < . . . < an. It is
non-decreasing if a1 ≤ a2 ≤ . . . ≤ an. Similarly decreasing and
non-increasing.

Chandra Chekuri (UIUC) CS/ECE 374 14 Fall 2018 14 / 32

Sequences
Example...

Example
1 Sequence: 6, 3, 5, 2, 7, 8, 1, 9

2 Subsequence of above sequence: 5, 2, 1

3 Increasing sequence: 3, 5, 9, 17, 54

4 Decreasing sequence: 34, 21, 7, 5, 1

5 Increasing subsequence of the first sequence: 2, 7, 9.

Chandra Chekuri (UIUC) CS/ECE 374 15 Fall 2018 15 / 32

Longest Increasing Subsequence Problem

Input A sequence of numbers a1, a2, . . . , an

Goal Find an increasing subsequence ai1, ai2, . . . , aik of
maximum length

Example
1 Sequence: 6, 3, 5, 2, 7, 8, 1

2 Increasing subsequences: 6, 7, 8 and 3, 5, 7, 8 and 2, 7 etc

3 Longest increasing subsequence: 3, 5, 7, 8

Chandra Chekuri (UIUC) CS/ECE 374 16 Fall 2018 16 / 32

Longest Increasing Subsequence Problem

Input A sequence of numbers a1, a2, . . . , an

Goal Find an increasing subsequence ai1, ai2, . . . , aik of
maximum length

Example
1 Sequence: 6, 3, 5, 2, 7, 8, 1

2 Increasing subsequences: 6, 7, 8 and 3, 5, 7, 8 and 2, 7 etc

3 Longest increasing subsequence: 3, 5, 7, 8

Chandra Chekuri (UIUC) CS/ECE 374 16 Fall 2018 16 / 32

Recursive Approach: Take 1
LIS: Longest increasing subsequence

Can we find a recursive algorithm for LIS?

LIS(A[1..n]):

1 Case 1: Does not contain A[n] in which case
LIS(A[1..n]) = LIS(A[1..(n − 1)])

2 Case 2: contains A[n] in which case LIS(A[1..n]) is not so
clear.

Observation
For second case we want to find a subsequence in A[1..(n − 1)]
that is restricted to numbers less than A[n]. This suggests that a
more general problem is LIS smaller(A[1..n], x) which gives the
longest increasing subsequence in A where each number in the
sequence is less than x .

Chandra Chekuri (UIUC) CS/ECE 374 17 Fall 2018 17 / 32

Recursive Approach: Take 1
LIS: Longest increasing subsequence

Can we find a recursive algorithm for LIS?

LIS(A[1..n]):
1 Case 1: Does not contain A[n] in which case

LIS(A[1..n]) = LIS(A[1..(n − 1)])
2 Case 2: contains A[n] in which case LIS(A[1..n]) is not so

clear.

Observation
For second case we want to find a subsequence in A[1..(n − 1)]
that is restricted to numbers less than A[n]. This suggests that a
more general problem is LIS smaller(A[1..n], x) which gives the
longest increasing subsequence in A where each number in the
sequence is less than x .

Chandra Chekuri (UIUC) CS/ECE 374 17 Fall 2018 17 / 32

Recursive Approach

LIS(A[1..n]): the length of longest increasing subsequence in A

LIS smaller(A[1..n], x): length of longest increasing subsequence
in A[1..n] with all numbers in subsequence less than x

LIS smaller(A[1..n], x):
if (n = 0) then return 0
m = LIS smaller(A[1..(n − 1)], x)
if (A[n] < x) then

m = max(m, 1 + LIS smaller(A[1..(n − 1)],A[n]))
Output m

LIS(A[1..n]):
return LIS smaller(A[1..n],∞)

Chandra Chekuri (UIUC) CS/ECE 374 18 Fall 2018 18 / 32

Example

Sequence: A[1..7] = 6, 3, 5, 2, 7, 8, 1

Chandra Chekuri (UIUC) CS/ECE 374 19 Fall 2018 19 / 32

Recursive Approach

LIS smaller(A[1..n], x):
if (n = 0) then return 0
m = LIS smaller(A[1..(n − 1)], x)
if (A[n] < x) then

m = max(m, 1 + LIS smaller(A[1..(n − 1)],A[n]))
Output m

LIS(A[1..n]):
return LIS smaller(A[1..n],∞)

How many distinct sub-problems will LIS smaller(A[1..n],∞)
generate?

O(n2)

What is the running time if we memoize recursion? O(n2) since
each call takes O(1) time to assemble the answers from to
recursive calls and no other computation.

How much space for memoization? O(n2)

Chandra Chekuri (UIUC) CS/ECE 374 20 Fall 2018 20 / 32

Recursive Approach

LIS smaller(A[1..n], x):
if (n = 0) then return 0
m = LIS smaller(A[1..(n − 1)], x)
if (A[n] < x) then

m = max(m, 1 + LIS smaller(A[1..(n − 1)],A[n]))
Output m

LIS(A[1..n]):
return LIS smaller(A[1..n],∞)

How many distinct sub-problems will LIS smaller(A[1..n],∞)
generate? O(n2)

What is the running time if we memoize recursion? O(n2) since
each call takes O(1) time to assemble the answers from to
recursive calls and no other computation.

How much space for memoization? O(n2)

Chandra Chekuri (UIUC) CS/ECE 374 20 Fall 2018 20 / 32

Recursive Approach

LIS smaller(A[1..n], x):
if (n = 0) then return 0
m = LIS smaller(A[1..(n − 1)], x)
if (A[n] < x) then

m = max(m, 1 + LIS smaller(A[1..(n − 1)],A[n]))
Output m

LIS(A[1..n]):
return LIS smaller(A[1..n],∞)

How many distinct sub-problems will LIS smaller(A[1..n],∞)
generate? O(n2)

What is the running time if we memoize recursion?

O(n2) since
each call takes O(1) time to assemble the answers from to
recursive calls and no other computation.

How much space for memoization? O(n2)

Chandra Chekuri (UIUC) CS/ECE 374 20 Fall 2018 20 / 32

Recursive Approach

LIS smaller(A[1..n], x):
if (n = 0) then return 0
m = LIS smaller(A[1..(n − 1)], x)
if (A[n] < x) then

m = max(m, 1 + LIS smaller(A[1..(n − 1)],A[n]))
Output m

LIS(A[1..n]):
return LIS smaller(A[1..n],∞)

How many distinct sub-problems will LIS smaller(A[1..n],∞)
generate? O(n2)

What is the running time if we memoize recursion? O(n2) since
each call takes O(1) time to assemble the answers from to
recursive calls and no other computation.

How much space for memoization? O(n2)

Chandra Chekuri (UIUC) CS/ECE 374 20 Fall 2018 20 / 32

Recursive Approach

LIS smaller(A[1..n], x):
if (n = 0) then return 0
m = LIS smaller(A[1..(n − 1)], x)
if (A[n] < x) then

m = max(m, 1 + LIS smaller(A[1..(n − 1)],A[n]))
Output m

LIS(A[1..n]):
return LIS smaller(A[1..n],∞)

How many distinct sub-problems will LIS smaller(A[1..n],∞)
generate? O(n2)

What is the running time if we memoize recursion? O(n2) since
each call takes O(1) time to assemble the answers from to
recursive calls and no other computation.

How much space for memoization?

O(n2)

Chandra Chekuri (UIUC) CS/ECE 374 20 Fall 2018 20 / 32

Recursive Approach

LIS smaller(A[1..n], x):
if (n = 0) then return 0
m = LIS smaller(A[1..(n − 1)], x)
if (A[n] < x) then

m = max(m, 1 + LIS smaller(A[1..(n − 1)],A[n]))
Output m

LIS(A[1..n]):
return LIS smaller(A[1..n],∞)

How many distinct sub-problems will LIS smaller(A[1..n],∞)
generate? O(n2)

What is the running time if we memoize recursion? O(n2) since
each call takes O(1) time to assemble the answers from to
recursive calls and no other computation.

How much space for memoization? O(n2)

Chandra Chekuri (UIUC) CS/ECE 374 20 Fall 2018 20 / 32

Naming subproblems and recursive equation

After seeing that number of subproblems is O(n2) we name them to
help us understand the structure better. For notational ease we add
∞ at end of array (in position n + 1)

LIS(i , j): length of longest increasing sequence in A[1..i] among
numbers less than A[j] (defined only for i < j)

Base case: LIS(0, j) = 0 for 1 ≤ j ≤ n + 1
Recursive relation:

LIS(i , j) = LIS(i − 1, j) if A[i] > A[j]
LIS(i , j) = max{LIS(i − 1, j), 1 + LIS(i − 1, i)} if
A[i] ≤ A[j]

Output: LIS(n, n + 1)

Chandra Chekuri (UIUC) CS/ECE 374 21 Fall 2018 21 / 32

Naming subproblems and recursive equation

After seeing that number of subproblems is O(n2) we name them to
help us understand the structure better. For notational ease we add
∞ at end of array (in position n + 1)

LIS(i , j): length of longest increasing sequence in A[1..i] among
numbers less than A[j] (defined only for i < j)

Base case: LIS(0, j) = 0 for 1 ≤ j ≤ n + 1
Recursive relation:

LIS(i , j) = LIS(i − 1, j) if A[i] > A[j]
LIS(i , j) = max{LIS(i − 1, j), 1 + LIS(i − 1, i)} if
A[i] ≤ A[j]

Output: LIS(n, n + 1)

Chandra Chekuri (UIUC) CS/ECE 374 21 Fall 2018 21 / 32

Iterative algorithm

LIS-Iterative(A[1..n]):
A[n + 1] =∞
int LIS[0..n, 1..n + 1]
for (j = 1 to n + 1) do

LIS[0, j] = 0

for (i = 1 to n) do

for (j = i + 1 to n)
If (A[i] > A[j]) LIS[i , j] = LIS[i − 1, j]
Else LIS[i , j] = max{LIS[i − 1, j], 1 + LIS[i − 1, i]}

Return LIS[n, n + 1]

Running time: O(n2)
Space: O(n2)

Chandra Chekuri (UIUC) CS/ECE 374 22 Fall 2018 22 / 32

How to order bottom up computation?

C
S

37
4

For i<j

1 2 3 4 n+1

0

1

2

3

n

i

j

Base case: LIS(0, j) = 0 for 1 ≤ j ≤ n + 1
Recursive relation:

LIS(i , j) = LIS(i − 1, j) if A[i] > A[j]

LIS(i , j) = max{LIS(i − 1, j), 1 + LIS(i − 1, i)} if A[i] ≤ A[j]

Chandra Chekuri (UIUC) CS/ECE 374 23 Fall 2018 23 / 32

How to order bottom up computation?

Sequence: A[1..7] = 6, 3, 5, 2, 7, 8, 1

C
S

37
4

For i<j

1 2 3 4 n+1

0

1

2

3

n

i

j

Chandra Chekuri (UIUC) CS/ECE 374 24 Fall 2018 24 / 32

Two comments

Question: Can we compute an optimum solution and not just its
value?

Yes! See notes.

Question: Is there a faster algorithm for LIS? Yes! Using a different
recursion and optimizing one can obtain an O(n log n) time and
O(n) space algorithm. O(n log n) time is not obvious. Depends on
improving time by using data structures on top of dynamic
programming.

Chandra Chekuri (UIUC) CS/ECE 374 25 Fall 2018 25 / 32

Two comments

Question: Can we compute an optimum solution and not just its
value?
Yes! See notes.

Question: Is there a faster algorithm for LIS?

Yes! Using a different
recursion and optimizing one can obtain an O(n log n) time and
O(n) space algorithm. O(n log n) time is not obvious. Depends on
improving time by using data structures on top of dynamic
programming.

Chandra Chekuri (UIUC) CS/ECE 374 25 Fall 2018 25 / 32

Two comments

Question: Can we compute an optimum solution and not just its
value?
Yes! See notes.

Question: Is there a faster algorithm for LIS? Yes! Using a different
recursion and optimizing one can obtain an O(n log n) time and
O(n) space algorithm. O(n log n) time is not obvious. Depends on
improving time by using data structures on top of dynamic
programming.

Chandra Chekuri (UIUC) CS/ECE 374 25 Fall 2018 25 / 32

Recursive Algorithm: Take 2

Definition
LISEnding(A[1..n]): length of longest increasing sub-sequence that
ends in A[n].

Question: can we obtain a recursive expression?

LISEnding(A[1..n]) = max
i :A[i]<A[n]

(
1 + LISEnding(A[1..i])

)

Chandra Chekuri (UIUC) CS/ECE 374 26 Fall 2018 26 / 32

Recursive Algorithm: Take 2

Definition
LISEnding(A[1..n]): length of longest increasing sub-sequence that
ends in A[n].

Question: can we obtain a recursive expression?

LISEnding(A[1..n]) = max
i :A[i]<A[n]

(
1 + LISEnding(A[1..i])

)

Chandra Chekuri (UIUC) CS/ECE 374 26 Fall 2018 26 / 32

Example

Sequence: A[1..8] = 6, 3, 5, 2, 7, 8, 1, 9

Chandra Chekuri (UIUC) CS/ECE 374 27 Fall 2018 27 / 32

Recursive Algorithm: Take 2

LIS ending alg(A[1..n]):
if (n = 0) return 0

m = 1
for i = 1 to n − 1 do

if (A[i] < A[n]) then

m = max
(
m, 1 + LIS ending alg(A[1..i])

)
return m

LIS(A[1..n]):
return maxn

i=1LIS ending alg(A[1 . . . i])

How many distinct sub-problems will LIS ending alg(A[1..n])
generate? O(n)

What is the running time if we memoize recursion? O(n2) since
each call takes O(n) time

How much space for memoization? O(n)

Chandra Chekuri (UIUC) CS/ECE 374 28 Fall 2018 28 / 32

Recursive Algorithm: Take 2

LIS ending alg(A[1..n]):
if (n = 0) return 0

m = 1
for i = 1 to n − 1 do

if (A[i] < A[n]) then

m = max
(
m, 1 + LIS ending alg(A[1..i])

)
return m

LIS(A[1..n]):
return maxn

i=1LIS ending alg(A[1 . . . i])

How many distinct sub-problems will LIS ending alg(A[1..n])
generate?

O(n)

What is the running time if we memoize recursion? O(n2) since
each call takes O(n) time

How much space for memoization? O(n)

Chandra Chekuri (UIUC) CS/ECE 374 28 Fall 2018 28 / 32

Recursive Algorithm: Take 2

LIS ending alg(A[1..n]):
if (n = 0) return 0

m = 1
for i = 1 to n − 1 do

if (A[i] < A[n]) then

m = max
(
m, 1 + LIS ending alg(A[1..i])

)
return m

LIS(A[1..n]):
return maxn

i=1LIS ending alg(A[1 . . . i])

How many distinct sub-problems will LIS ending alg(A[1..n])
generate? O(n)

What is the running time if we memoize recursion? O(n2) since
each call takes O(n) time

How much space for memoization? O(n)

Chandra Chekuri (UIUC) CS/ECE 374 28 Fall 2018 28 / 32

Recursive Algorithm: Take 2

LIS ending alg(A[1..n]):
if (n = 0) return 0

m = 1
for i = 1 to n − 1 do

if (A[i] < A[n]) then

m = max
(
m, 1 + LIS ending alg(A[1..i])

)
return m

LIS(A[1..n]):
return maxn

i=1LIS ending alg(A[1 . . . i])

How many distinct sub-problems will LIS ending alg(A[1..n])
generate? O(n)

What is the running time if we memoize recursion?

O(n2) since
each call takes O(n) time

How much space for memoization? O(n)

Chandra Chekuri (UIUC) CS/ECE 374 28 Fall 2018 28 / 32

Recursive Algorithm: Take 2

LIS ending alg(A[1..n]):
if (n = 0) return 0

m = 1
for i = 1 to n − 1 do

if (A[i] < A[n]) then

m = max
(
m, 1 + LIS ending alg(A[1..i])

)
return m

LIS(A[1..n]):
return maxn

i=1LIS ending alg(A[1 . . . i])

How many distinct sub-problems will LIS ending alg(A[1..n])
generate? O(n)

What is the running time if we memoize recursion? O(n2) since
each call takes O(n) time

How much space for memoization? O(n)

Chandra Chekuri (UIUC) CS/ECE 374 28 Fall 2018 28 / 32

Recursive Algorithm: Take 2

LIS ending alg(A[1..n]):
if (n = 0) return 0

m = 1
for i = 1 to n − 1 do

if (A[i] < A[n]) then

m = max
(
m, 1 + LIS ending alg(A[1..i])

)
return m

LIS(A[1..n]):
return maxn

i=1LIS ending alg(A[1 . . . i])

How many distinct sub-problems will LIS ending alg(A[1..n])
generate? O(n)

What is the running time if we memoize recursion? O(n2) since
each call takes O(n) time

How much space for memoization?

O(n)

Chandra Chekuri (UIUC) CS/ECE 374 28 Fall 2018 28 / 32

Recursive Algorithm: Take 2

LIS ending alg(A[1..n]):
if (n = 0) return 0

m = 1
for i = 1 to n − 1 do

if (A[i] < A[n]) then

m = max
(
m, 1 + LIS ending alg(A[1..i])

)
return m

LIS(A[1..n]):
return maxn

i=1LIS ending alg(A[1 . . . i])

How many distinct sub-problems will LIS ending alg(A[1..n])
generate? O(n)

What is the running time if we memoize recursion? O(n2) since
each call takes O(n) time

How much space for memoization? O(n)

Chandra Chekuri (UIUC) CS/ECE 374 28 Fall 2018 28 / 32

Iterative Algorithm via Memoization

Compute the values LIS ending alg(A[1..i]) iteratively in a bottom
up fashion.

LIS ending alg(A[1..n]):
Array L[1..n] (* L[i] = value of LIS ending alg(A[1..i]) *)

for i = 1 to n do
L[i] = 1
for j = 1 to i − 1 do

if (A[j] < A[i]) do
L[i] = max(L[i], 1 + L[j])

return L

LIS(A[1..n]):
L = LIS ending alg(A[1..n])
return the maximum value in L

Chandra Chekuri (UIUC) CS/ECE 374 29 Fall 2018 29 / 32

Iterative Algorithm via Memoization

Simplifying:

LIS(A[1..n]):
Array L[1..n] (* L[i] stores the value LISEnding(A[1..i]) *)

m = 0
for i = 1 to n do

L[i] = 1
for j = 1 to i − 1 do

if (A[j] < A[i]) do

L[i] = max(L[i], 1 + L[j])
m = max(m, L[i])

return m

Correctness: Via induction following the recursion
Running time: O(n2)
Space: Θ(n)

O(n log n) run-time achievable via better data structures.

Chandra Chekuri (UIUC) CS/ECE 374 30 Fall 2018 30 / 32

Iterative Algorithm via Memoization

Simplifying:

LIS(A[1..n]):
Array L[1..n] (* L[i] stores the value LISEnding(A[1..i]) *)

m = 0
for i = 1 to n do

L[i] = 1
for j = 1 to i − 1 do

if (A[j] < A[i]) do

L[i] = max(L[i], 1 + L[j])
m = max(m, L[i])

return m

Correctness: Via induction following the recursion
Running time:

O(n2)
Space: Θ(n)

O(n log n) run-time achievable via better data structures.

Chandra Chekuri (UIUC) CS/ECE 374 30 Fall 2018 30 / 32

Iterative Algorithm via Memoization

Simplifying:

LIS(A[1..n]):
Array L[1..n] (* L[i] stores the value LISEnding(A[1..i]) *)

m = 0
for i = 1 to n do

L[i] = 1
for j = 1 to i − 1 do

if (A[j] < A[i]) do

L[i] = max(L[i], 1 + L[j])
m = max(m, L[i])

return m

Correctness: Via induction following the recursion
Running time: O(n2)
Space:

Θ(n)

O(n log n) run-time achievable via better data structures.

Chandra Chekuri (UIUC) CS/ECE 374 30 Fall 2018 30 / 32

Iterative Algorithm via Memoization

Simplifying:

LIS(A[1..n]):
Array L[1..n] (* L[i] stores the value LISEnding(A[1..i]) *)

m = 0
for i = 1 to n do

L[i] = 1
for j = 1 to i − 1 do

if (A[j] < A[i]) do

L[i] = max(L[i], 1 + L[j])
m = max(m, L[i])

return m

Correctness: Via induction following the recursion
Running time: O(n2)
Space: Θ(n)

O(n log n) run-time achievable via better data structures.

Chandra Chekuri (UIUC) CS/ECE 374 30 Fall 2018 30 / 32

Iterative Algorithm via Memoization

Simplifying:

LIS(A[1..n]):
Array L[1..n] (* L[i] stores the value LISEnding(A[1..i]) *)

m = 0
for i = 1 to n do

L[i] = 1
for j = 1 to i − 1 do

if (A[j] < A[i]) do

L[i] = max(L[i], 1 + L[j])
m = max(m, L[i])

return m

Correctness: Via induction following the recursion
Running time: O(n2)
Space: Θ(n)

O(n log n) run-time achievable via better data structures.
Chandra Chekuri (UIUC) CS/ECE 374 30 Fall 2018 30 / 32

Example

Example
1 Sequence: 6, 3, 5, 2, 7, 8, 1

2 Longest increasing subsequence: 3, 5, 7, 8

1 L[i] is value of longest increasing subsequence ending in A[i]
2 Recursive algorithm computes L[i] from L[1] to L[i − 1]

3 Iterative algorithm builds up the values from L[1] to L[n]

Chandra Chekuri (UIUC) CS/ECE 374 31 Fall 2018 31 / 32

Example

Example
1 Sequence: 6, 3, 5, 2, 7, 8, 1

2 Longest increasing subsequence: 3, 5, 7, 8

1 L[i] is value of longest increasing subsequence ending in A[i]
2 Recursive algorithm computes L[i] from L[1] to L[i − 1]

3 Iterative algorithm builds up the values from L[1] to L[n]

Chandra Chekuri (UIUC) CS/ECE 374 31 Fall 2018 31 / 32

Dynamic Programming

1 Find a “smart” recursion for the problem in which the number of
distinct subproblems is small; polynomial in the original problem
size.

2 Estimate the number of subproblems, the time to evaluate each
subproblem and the space needed to store the value. This gives
an upper bound on the total running time if we use automatic
memoization.

3 Eliminate recursion and find an iterative algorithm to compute
the problems bottom up by storing the intermediate values in an
appropriate data structure; need to find the right way or order
the subproblem evaluation. This leads to an explicit algorithm.

4 Optimize the resulting algorithm further

Chandra Chekuri (UIUC) CS/ECE 374 32 Fall 2018 32 / 32

	Checking if string is in Kleene star of a language
	Longest Increasing Subsequence
	Longest Increasing Subsequence

