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Part I

Breadth First Search
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Breadth First Search (BFS)

Overview
(A) BFS is obtained from BasicSearch by processing edges using a

data structure called a queue.

(B) It processes the vertices in the graph in the order of their
shortest distance from the vertex s (the start vertex).

As such...
1 DFS good for exploring graph structure

2 BFS good for exploring distances
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xkcd take on DFS
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Queue Data Structure

Queues
A queue is a list of elements which supports the operations:

1 enqueue: Adds an element to the end of the list

2 dequeue: Removes an element from the front of the list

Elements are extracted in first-in first-out (FIFO) order, i.e.,
elements are picked in the order in which they were inserted.
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BFS Algorithm

Given (undirected or directed) graph G = (V ,E) and node s ∈ V
BFS(s)

Mark all vertices as unvisited

Initialize search tree T to be empty

Mark vertex s as visited

set Q to be the empty queue

enq(s)
while Q is nonempty do

u = deq(Q)
for each vertex v ∈ Adj(u)

if v is not visited then
add edge (u, v) to T
Mark v as visited and enq(v)

Proposition

BFS(s) runs in O(n + m) time.
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BFS: An Example in Undirected Graphs
1
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78

1. [1]

4. [4,5,7,8] 7. [8,6]
2. [2,3] 5. [5,7,8] 8. [6]
3. [3,4,5] 6. [7,8,6] 9. []

BFS tree is the set of black edges.
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BFS: An Example in Directed Graphs

Basic Graph Theory
Breadth First search
Depth First Search

Directed Graphs

Digraphs and Connectivity
Digraph Representation
Searching

Directed Graphs

AB C

DE F

G H

Definition

A directed graph (also called a digraph) is G = (V ,E ), where

V is a set of vertices or nodes

E ⊆ V × V is set of ordered pairs of vertices called edges

Viswanathan CS473ug
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BFS with Distance

BFS(s)
Mark all vertices as unvisited; for each v set dist(v) =∞
Initialize search tree T to be empty

Mark vertex s as visited and set dist(s) = 0
set Q to be the empty queue

enq(s)
while Q is nonempty do

u = deq(Q)
for each vertex v ∈ Adj(u) do

if v is not visited do
add edge (u, v) to T
Mark v as visited, enq(v)
and set dist(v) = dist(u) + 1
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Properties of BFS: Undirected Graphs

Theorem
The following properties hold upon termination of BFS(s)
(A) The search tree contains exactly the set of vertices in the

connected component of s.
(B) If dist(u) < dist(v) then u is visited before v .
(C) For every vertex u, dist(u) is the length of a shortest path (in

terms of number of edges) from s to u.
(D) If u, v are in connected component of s and e = {u, v} is an

edge of G , then |dist(u)− dist(v)| ≤ 1.
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Properties of BFS: Directed Graphs

Theorem
The following properties hold upon termination of BFS(s):
(A) The search tree contains exactly the set of vertices reachable

from s
(B) If dist(u) < dist(v) then u is visited before v
(C) For every vertex u, dist(u) is indeed the length of shortest path

from s to u
(D) If u is reachable from s and e = (u, v) is an edge of G , then

dist(v)− dist(u) ≤ 1.
Not necessarily the case that dist(u)− dist(v) ≤ 1.
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BFS with Layers

BFSLayers(s):
Mark all vertices as unvisited and initialize T to be empty

Mark s as visited and set L0 = {s}
i = 0
while Li is not empty do

initialize Li+1 to be an empty list

for each u in Li do
for each edge (u, v) ∈ Adj(u) do
if v is not visited

mark v as visited

add (u, v) to tree T
add v to Li+1

i = i + 1

Running time: O(n + m)
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Example

1

2 3

4 5

6

7

8
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BFS with Layers: Properties

Proposition

The following properties hold on termination of BFSLayers(s).
1 BFSLayers(s) outputs a BFS tree

2 Li is the set of vertices at distance exactly i from s
3 If G is undirected, each edge e = {u, v} is one of three types:

1 tree edge between two consecutive layers
2 non-tree forward/backward edge between two consecutive

layers
3 non-tree cross-edge with both u, v in same layer
4 =⇒ Every edge in the graph is either between two vertices

that are either (i) in the same layer, or (ii) in two consecutive
layers.
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Example

Basic Graph Theory
Breadth First search
Depth First Search

Directed Graphs

Digraphs and Connectivity
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Viswanathan CS473ug
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BFS with Layers: Properties
For directed graphs

Proposition

The following properties hold on termination of BFSLayers(s), if G
is directed.
For each edge e = (u, v) is one of four types:

1 a tree edge between consecutive layers, u ∈ Li , v ∈ Li+1 for
some i ≥ 0

2 a non-tree forward edge between consecutive layers

3 a non-tree backward edge

4 a cross-edge with both u, v in same layer
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Part II

Shortest Paths and Dijkstra’s
Algorithm
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Shortest Path Problems

Shortest Path Problems
Input A (undirected or directed) graph G = (V ,E) with edge

lengths (or costs). For edge e = (u, v),
`(e) = `(u, v) is its length.

1 Given nodes s, t find shortest path from s to t.

2 Given node s find shortest path from s to all other nodes.

3 Find shortest paths for all pairs of nodes.

Many applications!
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Single-Source Shortest Paths:
Non-Negative Edge Lengths

Single-Source Shortest Path Problems
1 Input: A (undirected or directed) graph G = (V ,E) with

non-negative edge lengths. For edge e = (u, v),
`(e) = `(u, v) is its length.

2 Given nodes s, t find shortest path from s to t.

3 Given node s find shortest path from s to all other nodes.

1 Restrict attention to directed graphs
2 Undirected graph problem can be reduced to directed graph

problem - how?
1 Given undirected graph G , create a new directed graph G ′ by

replacing each edge {u, v} in G by (u, v) and (v , u) in G ′.
2 set `(u, v) = `(v , u) = `({u, v})
3 Exercise: show reduction works. Relies on non-negativity!
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Single-Source Shortest Paths via BFS

Special case: All edge lengths are 1.

1 Run BFS(s) to get shortest path distances from s to all other
nodes.

2 O(m + n) time algorithm.

Special case: Suppose `(e) is an integer for all e?
Can we use BFS? Reduce to unit edge-length problem by placing
`(e)− 1 dummy nodes on e

Let L = maxe `(e). New graph has O(mL) edges and O(mL + n)
nodes. BFS takes O(mL + n) time. Not efficient if L is large.
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Towards an algorithm

Why does BFS work?

BFS(s) explores nodes in increasing distance from s

Lemma
Let G be a directed graph with non-negative edge lengths. Let
dist(s, v) denote the shortest path length from s to v . If
s = v0 → v1 → v2 → . . .→ vk is a shortest path from s to vk
then for 1 ≤ i < k :

1 s = v0 → v1 → v2 → . . .→ vi is a shortest path from s to
vi

2 dist(s, vi) ≤ dist(s, vk). Relies on non-neg edge lengths.

Proof.
Suppose not. Then for some i < k there is a path P ′ from s to vi
of length strictly less than that of s = v0 → v1 → . . .→ vi . Then
P ′ concatenated with vi → vi+1 . . .→ vk contains a strictly
shorter path to vk than s = v0 → v1 . . .→ vk . For the second
part, observe that edge lengths are non-negative.
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A proof by picture

s = v0

v1

v2

v3

v4

v5

v6

Shortest path
from v0 to v6
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A proof by picture

s = v0

v1

v2

v3

v4

v5

v6

Shortest path
from v0 to v6

Shorter path
from v0 to v4
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A proof by picture

s = v0

v1

v2

v3

v4

v5

v6

Shortest path
from v0 to v6

A shorter path
from v0 to v6. A
contradiction.
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A Basic Strategy

Explore vertices in increasing order of distance from s:
(For simplicity assume that nodes are at different distances from s
and that no edge has zero length)

Initialize for each node v, dist(s, v) =∞
Initialize X = {s},
for i = 2 to |V | do

(* Invariant: X contains the i − 1 closest nodes to s *)

Among nodes in V − X, find the node v that is the

i’th closest to s
Update dist(s, v)
X = X ∪ {v}

How can we implement the step in the for loop?
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Finding the ith closest node

1 X contains the i − 1 closest nodes to s
2 Want to find the i th closest node from V − X .

What do we know about the i th closest node?

Claim
Let P be a shortest path from s to v where v is the i th closest
node. Then, all intermediate nodes in P belong to X .

Proof.
If P had an intermediate node u not in X then u will be closer to s
than v . Implies v is not the i ’th closest node to s - recall that X
already has the i − 1 closest nodes.
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Finding the ith closest node repeatedly
An example
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Finding the ith closest node
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Corollary
The i th closest node is adjacent to X .
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Finding the ith closest node

1 X contains the i − 1 closest nodes to s
2 Want to find the i th closest node from V − X .

1 For each u ∈ V − X let P(s, u,X ) be a shortest path from s
to u using only nodes in X as intermediate vertices.

2 Let d ′(s, u) be the length of P(s, u,X )

Observations: for each u ∈ V − X ,

1 dist(s, u) ≤ d ′(s, u) since we are constraining the paths

2 d ′(s, u) = mint∈X (dist(s, t) + `(t, u)) - Why?

Lemma
If v is the i th closest node to s, then d ′(s, v) = dist(s, v).
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Finding the ith closest node

Lemma
Given:

1 X : Set of i − 1 closest nodes to s.
2 d ′(s, u) = mint∈X (dist(s, t) + `(t, u))

If v is an i th closest node to s, then d ′(s, v) = dist(s, v).

Proof.
Let v be the i th closest node to s. Then there is a shortest path P
from s to v that contains only nodes in X as intermediate nodes (see
previous claim). Therefore d ′(s, v) = dist(s, v).
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Finding the ith closest node

Lemma
If v is an i th closest node to s, then d ′(s, v) = dist(s, v).

Corollary
The i th closest node to s is the node v ∈ V − X such that
d ′(s, v) = minu∈V−X d ′(s, u).

Proof.
For every node u ∈ V − X , dist(s, u) ≤ d ′(s, u) and for the i th
closest node v , dist(s, v) = d ′(s, v). Moreover,
dist(s, u) ≥ dist(s, v) for each u ∈ V − X .
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Algorithm

Initialize for each node v: dist(s, v) =∞
Initialize X = ∅, d ′(s, s) = 0
for i = 1 to |V | do

(* Invariant: X contains the i − 1 closest nodes to s *)

(* Invariant: d ′(s, u) is shortest path distance from u to s
using only X as intermediate nodes*)

Let v be such that d ′(s, v) = minu∈V−X d ′(s, u)
dist(s, v) = d ′(s, v)
X = X ∪ {v}
for each node u in V − X do

d ′(s, u) = mint∈X

(
dist(s, t) + `(t, u)

)

Correctness: By induction on i using previous lemmas.
Running time: O(n · (n + m)) time.

1 n outer iterations. In each iteration, d ′(s, u) for each u by
scanning all edges out of nodes in X ; O(m + n) time/iteration.
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Improved Algorithm

1 Main work is to compute the d ′(s, u) values in each iteration
2 d ′(s, u) changes from iteration i to i + 1 only because of the

node v that is added to X in iteration i .

Initialize for each node v, dist(s, v) = d ′(s, v) =∞
Initialize X = ∅, d ′(s, s) = 0
for i = 1 to |V | do

// X contains the i − 1 closest nodes to s,
// and the values of d ′(s, u) are current

Let v be node realizing d ′(s, v) = minu∈V−X d ′(s, u)
dist(s, v) = d ′(s, v)
X = X ∪ {v}
Update d ′(s, u) for each u in V − X as follows:

d ′(s, u) = min
(
d ′(s, u), dist(s, v) + `(v , u)

)
Running time: O(m + n2) time.

1 n outer iterations and in each iteration following steps
2 updating d ′(s, u) after v is added takes O(deg(v)) time so

total work is O(m) since a node enters X only once
3 Finding v from d ′(s, u) values is O(n) time
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Dijkstra’s Algorithm

1 eliminate d ′(s, u) and let dist(s, u) maintain it

2 update dist values after adding v by scanning edges out of v

Initialize for each node v, dist(s, v) =∞
Initialize X = ∅, dist(s, s) = 0
for i = 1 to |V | do

Let v be such that dist(s, v) = minu∈V−X dist(s, u)
X = X ∪ {v}
for each u in Adj(v) do

dist(s, u) = min
(
dist(s, u), dist(s, v) + `(v , u)

)
Priority Queues to maintain dist values for faster running time

1 Using heaps and standard priority queues: O((m + n) log n)

2 Using Fibonacci heaps: O(m + n log n).
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Priority Queues

Data structure to store a set S of n elements where each element
v ∈ S has an associated real/integer key k(v) such that the
following operations:

1 makePQ: create an empty queue.

2 findMin: find the minimum key in S .

3 extractMin: Remove v ∈ S with smallest key and return it.

4 insert(v , k(v)): Add new element v with key k(v) to S .

5 delete(v): Remove element v from S .

6 decreaseKey(v , k ′(v)): decrease key of v from k(v) (current
key) to k ′(v) (new key). Assumption: k ′(v) ≤ k(v).

7 meld: merge two separate priority queues into one.

All operations can be performed in O(log n) time.
decreaseKey is implemented via delete and insert.
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Dijkstra’s Algorithm using Priority Queues

Q ← makePQ()

insert(Q, (s, 0))
for each node u 6= s do

insert(Q, (u,∞))

X ← ∅
for i = 1 to |V | do

(v , dist(s, v)) = extractMin(Q)
X = X ∪ {v}
for each u in Adj(v) do

decreaseKey
(
Q,

(
u, min

(
dist(s, u), dist(s, v) + `(v , u)

)))
.

Priority Queue operations:

1 O(n) insert operations

2 O(n) extractMin operations

3 O(m) decreaseKey operations
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Implementing Priority Queues via Heaps

Using Heaps
Store elements in a heap based on the key value

1 All operations can be done in O(log n) time

Dijkstra’s algorithm can be implemented in O((n + m) log n) time.
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Priority Queues: Fibonacci Heaps/Relaxed Heaps

Fibonacci Heaps
1 extractMin, insert, delete, meld in O(log n) time

2 decreaseKey in O(1) amortized time:

` decreaseKey
operations for ` ≥ n take together O(`) time

3 Relaxed Heaps: decreaseKey in O(1) worst case time but at
the expense of meld (not necessary for Dijkstra’s algorithm)

1 Dijkstra’s algorithm can be implemented in O(n log n + m)
time. If m = Ω(n log n), running time is linear in input size.

2 Data structures are complicated to analyze/implement. Recent
work has obtained data structures that are easier to analyze and
implement, and perform well in practice. Rank-Pairing Heaps
(European Symposium on Algorithms, September 2009!)
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Shortest Path Tree

Dijkstra’s algorithm finds the shortest path distances from s to V .
Question: How do we find the paths themselves?

Q = makePQ()

insert(Q, (s, 0))
prev(s)← null
for each node u 6= s do

insert(Q, (u,∞) )

prev(u)← null

X = ∅
for i = 1 to |V | do

(v , dist(s, v)) = extractMin(Q)
X = X ∪ {v}
for each u in Adj(v) do

if (dist(s, v) + `(v , u) < dist(s, u)) then
decreaseKey(Q, (u, dist(s, v) + `(v , u)))
prev(u) = v

Chandra Chekuri (UIUC) CS/ECE 374 38 Fall 2018 38 / 42



Shortest Path Tree

Dijkstra’s algorithm finds the shortest path distances from s to V .
Question: How do we find the paths themselves?

Q = makePQ()

insert(Q, (s, 0))
prev(s)← null
for each node u 6= s do

insert(Q, (u,∞) )

prev(u)← null

X = ∅
for i = 1 to |V | do

(v , dist(s, v)) = extractMin(Q)
X = X ∪ {v}
for each u in Adj(v) do

if (dist(s, v) + `(v , u) < dist(s, u)) then
decreaseKey(Q, (u, dist(s, v) + `(v , u)))
prev(u) = v

Chandra Chekuri (UIUC) CS/ECE 374 38 Fall 2018 38 / 42



Shortest Path Tree

Lemma
The edge set (u, prev(u)) is the reverse of a shortest path tree
rooted at s. For each u, the reverse of the path from u to s in the
tree is a shortest path from s to u.

Proof Sketch.
1 The edge set {(u, prev(u)) | u ∈ V} induces a directed

in-tree rooted at s (Why?)

2 Use induction on |X | to argue that the tree is a shortest path
tree for nodes in V .
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Shortest paths to s

Dijkstra’s algorithm gives shortest paths from s to all nodes in V .
How do we find shortest paths from all of V to s?

1 In undirected graphs shortest path from s to u is a shortest path
from u to s so there is no need to distinguish.

2 In directed graphs, use Dijkstra’s algorithm in G rev!
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Shortest paths between sets of nodes

Suppose we are given S ⊂ V and T ⊂ V . Want to find shortest
path from S to T defined as:

dist(S,T ) = min
s∈S,t∈T

dist(s, t)

How do we find dist(S,T )?
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Example Problem

You want to go from your house to a friend’s house. Need to pick up
some dessert along the way and hence need to stop at one of the
many potential stores along the way. How do you calculate the
“shortest” trip if you include this stop?

Given G = (V ,E) and edge lengths `(e), e ∈ E . Want to go from
s to t. A subset X ⊂ V that corresponds to stores. Want to find
minx∈X d(s, x) + d(x, t).

Basic solution: Compute for each x ∈ X , d(s, x) and d(x, t) and
take minimum. 2|X | shortest path computations.
O(|X |(m + n log n)).

Better solution: Compute shortest path distances from s to every
node v ∈ V with one Dijkstra. Compute from every node v ∈ V
shortest path distance to t with one Dijkstra.
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