

Input: Undirected graph $G=(V,E)$, $m=IE17$ l n= IVI] edgeweights $w: E \rightarrow \mathbb{R}$ ^A spanning tree is ^a tree in ^G containing all of V (e.g., n-1 edges) Goal: Compute the minimum weight spanning tree (abbr. MST) in G Iweight of tree = sum of edge weights $M \subset I$ ee wle

Applications Network design Approximations for harder problems like Traveling salesman

· deep connections across theory, comb OPT

GOAL: Connect town w/ minimum am out of electrical wire

Preliminary obs: min-ST w/r/t w = max-ST w/r/t-w " we can assume (WLOG) that all edge weights are distinct by breaking ties consistently. e.g. number edges $e_1, e_2, ..., e_m$ e_i "weighs less than" e_j if $w(e_i) < w(e_j)$ or $w(e_i) = w(e_j)$ and $i < j$.

Prins's algorithm repeatedly adds the minimum weight edge w/ one endpoint in T $PKIM (G=(V,E), w: E\rightarrow R)$ 1. $T \leftarrow \phi$, $S \leftarrow \{s\}$ for some vertex $S \in V$ 2. while $S \neq V$ a e ϵ min weight edge crossing S 6.7 \leftarrow Tte, 5 \leftarrow 50 $\{e\}$ $\qquad\qquad$ \qquad e = $\{u,v\}$ $3.$ return T v $e = \frac{1}{2}u, v$ $u \in S$, $v \notin S$, $S \in S$ tv 11 Key invariant: T is a tree connecting S ia

Kruskal's algorithm
\nrepeatedly adds the minimum weight
\nedge that doesn't create a cycle
\nKauskal (G=CV,E), w)
\n1. T
$$
\leftarrow \phi
$$

\n2. while T does not span all of V
\n3. e \leftarrow min weight edge in EIT
\n by T⁺ the is acyclic
\n6. T \leftarrow The
\n3. return T
\n// Key invariant: T is a forest
\n — o'
\n —

Borivka

grow all connected components ^w min weight crossing edge in parallel

Bor u^{vka:} 1. $T \leftarrow \phi$ 2. while T is not spanning A. $U \leftarrow \phi$ B. For each component SCV w/r H T i e ϵ min weight edge w/ 1 endpoint in 5 200 ii. U=U+e 3 return T

reverse delete

repeatedly removes max weight edge that does not disconnect graph

REVERSE GREEDY (G=(V,E), W): $1.7 < E$ $a.$ while $E \neq \emptyset$ A et max weight edge in E $B E \leftarrow E - e$ C if T ^e is connected $i. T \leftarrow T - e$ 3 return T / Key invariant: T is a connected subgraph spanning ^V

On to proofs!

3

Lemmon let T be a spanning tree, ee EIT Then Tte contains a unique cycle, which contains e.

Proof let e= {u, v}, since T is a spanning, there is a unique path P uto v in T. C=P+e is r our cycle

Suppose there is another cycle $D \subseteq T+e$.

 $e \in D$ $\circled{\hspace{-.15cm}}$

D-e is a path in T

P is the unique path, D = Pte

let C be the unique off cycle in Tte C-e is apath starting in S ending VIS.

Theorem (suppose edge weights are distinct) There are exactly n-1 safe edges and they form the unique MST Proof O first Lemma (safe \leq MST) => < n-1 sase edges (safe & Z Kruskal, Prim's,..) $\circled{2}$ zn ⁱ safe edges

Jemma (Suppose distinct edge weights). All edges are either safe or unsafe Proot suppose e is not safe. Let T be the MST. $e\notin T$. Let C be the cycle in Tte He for some feck, then T-Ste has smaller suppose e is sate, and C is a cycle containing e.

 $w(e) \leq w(f)$

<u>Lemma</u> Let T be a connected subgraph, and $e^{\epsilon T}$ the max weight e^{ϵ} and $e^{\epsilon T}$. Then ^e is an unsafe edge s.t. T-e is $still$ conner Froot Since Te is connected ^T contains ^a cycle ^C containing e. $\overline{}$ man weight on cycle unsafe

Corollary

everse Delete relain the M

Implementation

Borinka

Kruskal

Prim

O(mlogn) $O(m \log n)$ $O(m + n \log n)$

Borivka

grow all connected components ^w min weight crossing edge in parallel

Boru^ovka: 1. $T \leftarrow \phi$ 2. while T is not spanning A. $U \leftarrow \phi$ B. For each component SCV w/r H T i e ϵ min weight edge w/ 1 endpoint in ^S $i.i.d.$ $C. T C T U$ 3 return T TE

Borûvka running Time Hadds edges crossing each component in parallel . Each round halves # connected comp. => O(logn) rounds · Each round we look at each edge, pick out one edge per component 0cm per round \Rightarrow $clmlogn)$ total

Kruskal's algorithm
\nrepeatedly adds the minimum weight
\nedge that does not create a cycle
\nKruskal (G=(v,E) w)
\n1. T
$$
\leftarrow \phi
$$

\n2. while T does not span all of V
\n3. e \leftarrow min weight edge in EVT
\n at The is acyclic
\n6. T \leftarrow The
\n3. return T
\n// Key invariant: T is a forest

Kruska) (refactored) 1 T $\leftarrow \phi$ $2.$ for each $e = \{u,v\}$ in increasing order of wle) A) if u,v are in diff components of T $()$ T \leftarrow Tte 3 return T we need to ^a maintain connected components of ^T

⁶ quickly decide if 2 vertices are in same component

Union-Find data structure

maintains collection of disjoint sets s.T $Union(u,v):$ combine the set containing u and the set containing V Together (u,v): returns True iff u and ^V are in the same set

union find can be implemented very fast (almost 04) amortized per op.). Bottleneck of Kruskal is sorting \Rightarrow 0(m log n)

Prins's algorithm repeatedly adds the minimum weight edge w/ one endpoint in T $PKIM (G=(V,E), w: E\rightarrow R)$ 1. $T \leftarrow \phi$, $S \leftarrow \{s\}$ for some vertex $S \in V$ 2 while St V a e ϵ min weight edge crossing S 6.7 \leftarrow Tte, 5 \leftarrow 50 $\{e\}$

3 return T

// Key invariant: T is a tree connecting S

Need: quickly identify nearest vertex outside the tree to the tree

Priority queue data structure · insert (K,p): insert key K w/ priority p · decrease (K, p): decrease the priority of a key K (already in the queue) to a smaller priority p' extract min remove and return the key w/ the minimum priority

For Prim's algo: Keys = vertices not in the tree priority = min weight of any edge from vertex to tree Fibonaci Heap $O(1)$ O(n) insertions $O(n)$ extract-min $O(logn)$ O(1) amortized O(m) decrease-key

 $O(m + n \log n)$