
 

Minimum Spanning Trees

by Kent Quanrud

f

EE

Kkk



Input Undirected graph G EYE fmn Ff
edgeweights w E IR

A spanning tree is a tree in G

containing all of V leg n t edges

Goal compute the minimum weight

spanning tree abbr MST in G

weight of tree sum of edge weights
w T

ee
wCe

if

t.EE

z



Applications
Network design
Approximations for harder

problems like Traveling salesman
deep connections across theory
comb OPT

THA
a r n

I EE EE

4 3 tl

rE

f E rEi

GOAL Connect town w minimum
am out of electrical wire



Preliminary obs
min ST WAH w max ST WHA w

we can assume CWLOG that

all edgeweights are distinct by
breaking ties consistently

e g number edges es ez i em

ei weighs less than ej is

nice since

or nice _Wcg and isj



Outline
1 Describe 4 different algorithms

2 Prove all of their correctness

at the same time

3 Discuss data structures and
pin down the running time

Running example

A



Prins's algorithm
repeatedly adds the minimum

weight edge w one endpoint in T

PRIM G YE W E 7113

1 I 0 S s for some vertex SEV

2 while St V

a e min weight edge crossings
6 TL Tte S SU e3 see e Eu is

3 return T a e u u

UES VES S Stv

11 Key invariant T is a tree connecting S

ia



i



Kruskal's algorithm
repeatedly adds the minimum weight

edge that does not create a cycle

KRUSKAL G YE w

1 1

2 while T does not span all of

a e min weight edge in F IT
set Tte is acyclic

6 T Tt e
3 return T

Akey invariant T is a forest
gag

l I l
p

1 I

y i

i
a o



xnxx.tn

i
in IT



Borivka
grow all connected components w

min weight crossing edge in parallel

Borivka
1 1 of
2 while T is not spanning
A U 0
B for each component SCV Wlr H T

i e min weight edge w 1

endpoint in S A

IIIa te
3 return T

17 T

titties
r e og g o o_0

to



simulation

iii



reverse delete

repeatedly removes max weight
edge that does not disconnect

graph

REVERSE GREEDY G YE w

1 T E

2 while E FO

A e max weight edge in E

B E E e

C if T e is connected

i 1 T e

3 return T

H key invariant T is a connected

subgraph spanning V



z
E

Ex

IIT

On to proofs



4 E o V

T y

Lemme let T be aspanning Tree ee ETI

Then Tte contains a unique cycle which
contains e

Proof let e u r since T is a

spanning there is a unique path P

from U to V in T Pte is

our cycle

Suppose there is another cykle

DE Ite

id e ED
D e is a path in T

P is the unique path D Pte



Safeedges An edge e is safe if there is

a set of vertices 5 such that e is the

min weight edge w one endpoint in S

s

p

Leming Any safe edge e is in every MST

Proof let e be a safe edge whet Gay S

Let T be an MST s.T.EE T

in CTD ICT w twee

w T



let C be the unique cycle in Tte

C e is apath starting in 5

ending Vhs



Lemmas Supposeedge weights are distinct

Then Primlkruskall Borurka compute
spanning trees where every edge is safe

Proof
add min weight

inspection Cross s



theorem suppose edge weights are distinct

There are exactly n l safe edges and

they form the unique MST

Proof
first Lemma safe E MST

E n I safe edges

safe Eh Z Kruskal Pri m's

zn i safe edges



Corollary Prim's Kruskal's Borivka's

algos all return MST's

Proof
I



Unsafeedgese an edge e is unsafe if

there is a cycle C where e is the

uniquely maximum weight edge
100

3 49 0

14
7



Femina suppose distinct edgeweights
All edges are either safe or unsafe

Proot suppose e is not safe let T

be the MST EET let C be the

cycle in Tte

f a 9eI e

then T Ste has smallerweight
suppose e is safe and C is a cycle

containing e

week wcf



Lemmy Let T be a connected subgraph
and EET the max weight edgett Then

e is an unsafe edge
T e is still connected

Proof since T e is connected

T contains a cycle C containing
e

k
them weight
on cycle unsafe

corollary
Reverse greedy

works



Implementation
Borivka OCmlogn

Kruskal OCmloyn
Prim Ocmtrilogn



Borivka
grow all connected components w

min weight crossing edge in parallel

Boruovka
1 1 of
2 while T is not spanning
A U of
B for each component SCV wlrH T

i e min weight edge w 1

endpoint in S
ii create

C T TO U
3 return T



Boruorkarunning imel

Hadds edges crossing each component
in parallel

Each round halves connected comp

Oclogn rounds

Each round we look at each edge
pick out one edge per component

0cm per round

0cm login total



Kruskal's algorithm
repeatedly adds the minimum weight

edge that does not create a cycle

KRUSKAL G YE w

1 1

2 while T does not span all of

a e min weight edge in E T

st Tte is acyclic
6 T Tt e

3 return T

H key invariant T is a forest

K

H t



Kruskal refactored

2 T 0
2 for each e uv3 in increasing order of wce

if u u are in diff components of T

1 Tt e

3 return T

we need to

a maintain connected components of T
6 quickly decide if 2 vertices are in same

component



UnionFinddatastructuref
maintains collection of disjoint sets s.T

Union Lu v combine the set containing u
and the set containing V

Together yr returns True iff n and
V are in the same set

q
u v

0CdCnD

union find can be implemented very
fast almost 04 amortized per op

Bottleneck of Kruskal is sorting
0cm log n



Prins's algorithm
repeatedly adds the minimum

weight edge w one endpoint in T

PRIM G YE W E 7113

1 T 0 S s for some vertex SEV

2 while St V

a e min weight edge crossing S
b T Tte S SU e3

3 return T

H key invariant T is a tree connecting S

9
D I

I
I
b



Need quickly identify nearest

vertex outside the tree to the tree

Prioritygueuedatastructuref
insert CK p insert key K w priority p
decrease K p decrease the priority
of a key k already in the queue

to a smaller priority p

extract min remove and return the

key w the minimum priority



For Prim's algo
keys vertices not in the Tree

priority min weight of any edge
from vertex to Tree

Fibonacci Heap
Och insertions OCI

0cm extract min Ocloyn
OCm decrease keyOCDamortized

OCmtrilogn


