CS/ECE 374: Algorithms & Models of Computation, Fall 2018

Algorithms for Minimum Spanning Trees

Lecture 19 November 6, 2018

Part I

[Algorithms for Minimum Spanning](#page-1-0) **[Tree](#page-1-0)**

Minimum Spanning Tree

Input Connected graph $G = (V, E)$ with edge costs Goal Find $T \subseteq E$ such that (V, T) is connected and total cost of all edges in T is smallest

 \bullet T is the minimum spanning tree (MST) of G

Minimum Spanning Tree

Input Connected graph $G = (V, E)$ with edge costs Goal Find $T \subseteq E$ such that (V, T) is connected and total cost of all edges in T is smallest

 \bullet T is the minimum spanning tree (MST) of G

Applications

1 Network Design

- **O** Designing networks with minimum cost but maximum connectivity
- 2 Approximation algorithms
	- **Q** Can be used to bound the optimality of algorithms to approximate Traveling Salesman Problem, Steiner Trees, etc.
- **3** Cluster Analysis

Some basic properties of Spanning Trees

- \bullet A graph G is connected iff it has a spanning tree
- Every spanning tree of a graph on *n* nodes has $n 1$ edges

Some basic properties of Spanning Trees

- \bullet A graph G is connected iff it has a spanning tree
- Every spanning tree of a graph on *n* nodes has $n 1$ edges
- Let $T = (V, E_T)$ be a spanning tree of $G = (V, E)$. For every non-tree edge $e \in E \setminus E_T$ there is a unique cycle C in $T + e$. For every edge $f \in C - \{e\}$, $T - f + e$ is another spanning tree of G .

Greedy Template

Main Task: In what order should edges be processed? When should we add edge to spanning tree?

Figure: Graph G

Figure: MST of G

 T maintained by algorithm will be a tree. Start with a node in T . In each iteration, pick edge with least attachment cost to T .

Figure: Graph G

 T maintained by algorithm will be a tree. Start with a node in T . In each iteration, pick edge with least attachment cost to T .

Figure: Graph G

 T maintained by algorithm will be a tree. Start with a node in T . In each iteration, pick edge with least attachment cost to T .

Figure: Graph G

Figure: MST of G

 T maintained by algorithm will be a tree. Start with a node in T . In each iteration, pick edge with least attachment cost to T .

Figure: Graph G

Figure: MST of G

 T maintained by algorithm will be a tree. Start with a node in T . In each iteration, pick edge with least attachment cost to T .

Figure: Graph G

Figure: MST of G

 T maintained by algorithm will be a tree. Start with a node in T . In each iteration, pick edge with least attachment cost to T .

Figure: Graph G

Figure: MST of G

 T maintained by algorithm will be a tree. Start with a node in T . In each iteration, pick edge with least attachment cost to T .

Figure: Graph G

Figure: MST of G

Reverse Delete Algorithm

Initially E is the set of all edges in G **T** is E (* **T** will store edges of a MST *) while E is not empty do choose $e \in E$ of largest cost if removing e does not disconnect T then remove e from T return the set T

Returns a minimum spanning tree.

Borůvka's Algorithm

Simplest to implement. See notes. Assume \boldsymbol{G} is a connected graph.

```
T is \emptyset (* T will store edges of a MST *)
while T is not spanning do
    X \leftarrow \emptysetfor each connected component S of T do
         add to X the cheapest edge between S and V \setminus SAdd edges in X to Treturn the set T
```
Borůvka's Algorithm

Correctness of MST Algorithms

- **1** Many different MST algorithms
- 2 All of them rely on some basic properties of MSTs, in particular the **Cut Property** to be seen shortly.

Assumption

Edge costs are distinct, that is no two edge costs are equal.

Cuts

Definition

Given a graph $G = (V, E)$, a cut is a partition of the vertices of the graph into two sets $(S, V \setminus S)$.

Cuts

Definition

Given a graph $G = (V, E)$, a cut is a partition of the vertices of the graph into two sets $(S, V \setminus S)$.

Edges having an endpoint on both sides are the **edges of the cut**.

A cut edge is **crossing** the cut.

Safe and Unsafe Edges

Definition

An edge $e = (u, v)$ is a safe edge if there is some partition of V into S and $V \setminus S$ and e is the unique minimum cost edge crossing S (one end in S and the other in $V \setminus S$).

Safe and Unsafe Edges

Definition

An edge $e = (u, v)$ is a safe edge if there is some partition of V into S and $V \setminus S$ and e is the unique minimum cost edge crossing S (one end in S and the other in $V \setminus S$).

Definition

An edge $e = (u, v)$ is an unsafe edge if there is some cycle C such that e is the unique maximum cost edge in C .

Safe and Unsafe Edges

Definition

An edge $e = (u, v)$ is a safe edge if there is some partition of V into S and $V \setminus S$ and e is the unique minimum cost edge crossing S (one end in S and the other in $V \setminus S$).

Definition

An edge $e = (u, v)$ is an unsafe edge if there is some cycle C such that e is the unique maximum cost edge in C .

Proposition

If edge costs are distinct then every edge is either safe or unsafe.

Safe edge Example...

Every cut identifies one safe edge...

Safe edge Example...

Every cut identifies one safe edge...

Safe edge in the cut $(S, V \setminus S)$

...the cheapest edge in the cut. Note: An edge e may be a safe edge for *many* cuts!

Chandra Chekuri (UIUC) [CS/ECE 374](#page-0-0) 16 Fall 2018 16 / 1

Every cycle identifies one **unsafe** edge...

Every cycle identifies one **unsafe** edge...

...the most expensive edge in the cycle.
Example

Figure: Graph with unique edge costs. Safe edges are red, rest are unsafe.

Example

Figure: Graph with unique edge costs. Safe edges are red, rest are unsafe.

Example

Figure: Graph with unique edge costs. Safe edges are red, rest are unsafe.

And all safe edges are in the MST in this case...

Key Observation: Cut Property

Lemma

If e is a safe edge then every minimum spanning tree contains e .

Key Observation: Cut Property

Lemma

If e is a safe edge then every minimum spanning tree contains e .

Proof.

- **O** Suppose (for contradiction) e is not in MST T .
- **2** Since *e* is safe there is an $S \subset V$ such that *e* is the unique min cost edge crossing S.
- \bullet Since T is connected, there must be some edge f with one end in S and the other in $V \setminus S$
- **4** Since $c_f > c_e$, $T' = (T \setminus \{f\}) \cup \{e\}$ is a spanning tree of lower cost!

Key Observation: Cut Property

Lemma

If e is a safe edge then every minimum spanning tree contains e .

Proof.

- **O** Suppose (for contradiction) e is not in MST T .
- **2** Since *e* is safe there is an $S \subset V$ such that *e* is the unique min cost edge crossing S.
- \bullet Since T is connected, there must be some edge f with one end in S and the other in $V \setminus S$
- **4** Since $c_f > c_e$, $T' = (T \setminus \{f\}) \cup \{e\}$ is a spanning tree of lower cost! Error: T' may not be a spanning tree!!

 \bigcirc (A) Consider adding the edge f.

 \bigcirc (A) Consider adding the edge f. (B) It is safe because it is the cheapest edge in the cut.

- \bullet (A) Consider adding the edge f . ² (B) It is safe because it is the cheapest edge in the cut.
- ³ (C) Lets throw out the edge *e* currently in the spanning tree which is more expensive than f and is in the same cut. Put it f instead...

- \bigcirc (A) Consider adding the edge f. ² (B) It is safe because it is the cheapest edge in the cut.
- ³ (C) Lets throw out the edge *e* currently in the spanning tree which is more expensive than f and is in the same cut. Put it f instead...
	- ⁴ (D) New graph of selected edges is not a tree anymore. BUG.

Proof.

1 Suppose $e = (v, w)$ is not in MST T and e is min weight edge in cut $(S, V \setminus S)$. Assume $v \in S$.

Proof.

- **1** Suppose $e = (v, w)$ is not in MST T and e is min weight edge in cut $(S, V \setminus S)$. Assume $v \in S$.
- $\overline{2}$ $\overline{1}$ is spanning tree: there is a unique path P from v to w in T

Proof.

- **1** Suppose $e = (v, w)$ is not in MST T and e is min weight edge in cut $(S, V \setminus S)$. Assume $v \in S$.
- $\overline{2}$ $\overline{1}$ is spanning tree: there is a unique path P from v to w in T

Proof.

1 Suppose $e = (v, w)$ is not in MST T and e is min weight edge in cut $(S, V \setminus S)$. Assume $v \in S$. \bullet \bullet T is spanning tree: there is a unique path P from v to w in T

 \bullet Let w' be the first vertex in P belonging to $\bm V \setminus \bm S$; let $\bm v'$ be the vertex just before it on P , and let $e' = (v', w')$

Proof.

1 Suppose $e = (v, w)$ is not in MST T and e is min weight edge in cut $(S, V \setminus S)$. Assume $v \in S$.

 $\overline{2}$ $\overline{1}$ is spanning tree: there is a unique path P from v to w in T

 \bullet Let w' be the first vertex in P belonging to $\bm V \setminus \bm S$; let $\bm v'$ be the vertex just before it on P , and let $e' = (v', w')$

 $\mathbf{F}^{\prime} = (\mathcal{T} \setminus \{e^{\prime}\}) \cup \{e\}$ is spanning tree of lower cost. (Why?)

Proof of Cut Property (contd)

Observation $T' = (T \setminus \{e'\}) \cup \{e\}$ is a spanning tree.

Proof.

 T' is connected.

 T' is a tree

Proof of Cut Property (contd)

Observation

 $T' = (T \setminus \{e'\}) \cup \{e\}$ is a spanning tree.

Proof.

 T' is connected.

Removed $e' = (v', w')$ from T but v' and w' are connected by the path $P - f + e$ in T' . Hence T' is connected if T is. T' is a tree

Proof of Cut Property (contd)

Observation

 $T' = (T \setminus \{e'\}) \cup \{e\}$ is a spanning tree.

Proof.

 T' is connected.

Removed $e' = (v', w')$ from T but v' and w' are connected by the path $P - f + e$ in T' . Hence T' is connected if T is. T' is a tree

 T' is connected and has $n - 1$ edges (since T had $n - 1$ edges) and hence \mathcal{T}' is a tree

Safe Edges form a Tree

Lemma

Let G be a connected graph with distinct edge costs, then the set of safe edges form a connected graph.

Proof.

- **O** Suppose not. Let S be a connected component in the graph induced by the safe edges.
- **2** Consider the edges crossing S , there must be a safe edge among them since edge costs are distinct and so we must have picked it.

Safe Edges form an MST

Corollary

Let G be a connected graph with distinct edge costs, then set of safe edges form the unique MST of G .

Safe Edges form an MST

Corollary

Let G be a connected graph with distinct edge costs, then set of safe edges form the *unique* MST of **G**.

Consequence: Every correct MST algorithm when G has unique edge costs includes exactly the safe edges.

Cycle Property

Lemma

If e is an unsafe edge then no MST of G contains e.

Note: Cut and Cycle properties hold even when edge costs are not distinct. Safe and unsafe definitions do not rely on distinct cost assumption.

Prim's Algorithm

Pick edge with minimum attachment cost to current tree, and add to current tree.

Proof of correctness.

 \bullet If e is added to tree, then e is safe and belongs to every MST .

² Set of edges output is a spanning tree

Prim's Algorithm

Pick edge with minimum attachment cost to current tree, and add to current tree.

Proof of correctness.

 \bullet If e is added to tree, then e is safe and belongs to every MST . \bullet Let S be the vertices connected by edges in T when e is added.

² Set of edges output is a spanning tree

Prim's Algorithm

Pick edge with minimum attachment cost to current tree, and add to current tree.

Proof of correctness.

 \bullet If e is added to tree, then e is safe and belongs to every MST . **Q** Let S be the vertices connected by edges in T when **e** is added. **2 e** is edge of lowest cost with one end in **S** and the other in

- $V \setminus S$ and hence *e* is safe.
- ² Set of edges output is a spanning tree

Prim's Algorithm

Pick edge with minimum attachment cost to current tree, and add to current tree.

Proof of correctness.

 \bullet If e is added to tree, then e is safe and belongs to every MST .

- **Q** Let S be the vertices connected by edges in T when **e** is added.
- **2 e** is edge of lowest cost with one end in **S** and the other in $V \setminus S$ and hence *e* is safe.
- 2 Set of edges output is a spanning tree
	- \bullet Set of edges output forms a connected graph: by induction, S is connected in each iteration and eventually $S = V$.

Prim's Algorithm

Pick edge with minimum attachment cost to current tree, and add to current tree.

Proof of correctness.

 \bullet If e is added to tree, then e is safe and belongs to every MST .

- **Q** Let S be the vertices connected by edges in T when **e** is added.
- **2 e** is edge of lowest cost with one end in **S** and the other in $V \setminus S$ and hence *e* is safe.
- 2 Set of edges output is a spanning tree
	- \bullet Set of edges output forms a connected graph: by induction, S is connected in each iteration and eventually $S = V$.
	- **2** Only safe edges added and they do not have a cycle

Kruskal's Algorithm

Pick edge of lowest cost and add if it does not form a cycle with existing edges.

Proof of correctness.

1 If $e = (u, v)$ is added to tree, then e is safe

² Set of edges output is a spanning tree : exercise

Kruskal's Algorithm

Pick edge of lowest cost and add if it does not form a cycle with existing edges.

Proof of correctness.

1 If $e = (u, v)$ is added to tree, then e is safe

1 When algorithm adds **e** let **S** and **S**' be the connected components containing \boldsymbol{u} and \boldsymbol{v} respectively

² Set of edges output is a spanning tree : exercise

Kruskal's Algorithm

Pick edge of lowest cost and add if it does not form a cycle with existing edges.

Proof of correctness.

1 If $e = (u, v)$ is added to tree, then e is safe

- **1** When algorithm adds **e** let **S** and **S**' be the connected components containing \boldsymbol{u} and \boldsymbol{v} respectively
- **2** e is the lowest cost edge crossing S (and also S').

² Set of edges output is a spanning tree : exercise

Kruskal's Algorithm

Pick edge of lowest cost and add if it does not form a cycle with existing edges.

Proof of correctness.

1 If $e = (u, v)$ is added to tree, then e is safe

- \bullet When algorithm adds \boldsymbol{e} let \boldsymbol{S} and \boldsymbol{S}' be the connected components containing \boldsymbol{u} and \boldsymbol{v} respectively
- **2** e is the lowest cost edge crossing S (and also S').
- **3** If there is an edge e' crossing S and has lower cost than e , then e' would come before e in the sorted order and would be added by the algorithm to T
- ² Set of edges output is a spanning tree : exercise

Correctness of Borůvka's Algorithm

Proof of correctness.

Argue that only safe edges are added.

Correctness of Reverse Delete Algorithm

Reverse Delete Algorithm

Consider edges in decreasing cost and remove an edge if it does not disconnect the graph

Proof of correctness.

Argue that only unsafe edges are removed.

Heuristic argument: Make edge costs distinct by adding a small tiny and different cost to each edge

Heuristic argument: Make edge costs distinct by adding a small tiny and different cost to each edge

Formal argument: Order edges lexicographically to break ties

- \bullet $e_i\prec e_j$ if either $c(e_i)< c(e_j)$ or $(c(e_i)=c(e_j)$ and $i< j)$
- 2 Lexicographic ordering extends to sets of edges. If $A, B \subseteq E$, $A \neq B$ then $A \prec B$ if either $c(A) < c(B)$ or $(c(A) = c(B))$ and $A \setminus B$ has a lower indexed edge than $B \setminus A$)
- ³ Can order all spanning trees according to lexicographic order of their edge sets. Hence there is a unique MST.

Heuristic argument: Make edge costs distinct by adding a small tiny and different cost to each edge

Formal argument: Order edges lexicographically to break ties

- \bullet $e_i\prec e_j$ if either $c(e_i)< c(e_j)$ or $(c(e_i)=c(e_j)$ and $i< j)$
- 2 Lexicographic ordering extends to sets of edges. If $A, B \subseteq E$, $A \neq B$ then $A \prec B$ if either $c(A) < c(B)$ or $(c(A) = c(B))$ and $A \setminus B$ has a lower indexed edge than $B \setminus A$)
- ³ Can order all spanning trees according to lexicographic order of their edge sets. Hence there is a unique MST.
Heuristic argument: Make edge costs distinct by adding a small tiny and different cost to each edge

Formal argument: Order edges lexicographically to break ties

- \bullet $e_i\prec e_j$ if either $c(e_i)< c(e_j)$ or $(c(e_i)=c(e_j)$ and $i< j)$
- 2 Lexicographic ordering extends to sets of edges. If $A, B \subseteq E$, $A \neq B$ then $A \prec B$ if either $c(A) < c(B)$ or $(c(A) = c(B))$ and $A \setminus B$ has a lower indexed edge than $B \setminus A$)
- ³ Can order all spanning trees according to lexicographic order of their edge sets. Hence there is a unique MST.

Prim's, Kruskal, and Reverse Delete Algorithms are optimal with respect to lexicographic ordering.

Edge Costs: Positive and Negative

- Algorithms and proofs don't assume that edge costs are non-negative! MST algorithms work for arbitrary edge costs.
- 2 Another way to see this: make edge costs non-negative by adding to each edge a large enough positive number. Why does this work for MSTs but not for shortest paths?
- **3** Can compute *maximum* weight spanning tree by negating edge costs and then computing an MST.

Edge Costs: Positive and Negative

- Algorithms and proofs don't assume that edge costs are non-negative! MST algorithms work for arbitrary edge costs.
- 2 Another way to see this: make edge costs non-negative by adding to each edge a large enough positive number. Why does this work for MSTs but not for shortest paths?
- **3** Can compute *maximum* weight spanning tree by negating edge costs and then computing an MST. Question: Why does this not work for shortest paths?

Part II

[Data Structures for MST: Priority](#page-75-0) [Queues and Union-Find](#page-75-0)

Implementing Borůvka's Algorithm

No complex data structure needed.

```
T is \emptyset (* T will store edges of a MST *)
while T is not spanning do
    X \leftarrow \emptysetfor each connected component S of T do
         add to X the cheapest edge between S and V \setminus SAdd edges in X to Treturn the set T
```
 \bullet $O(\log n)$ iterations of while loop. Why?

Implementing Borůvka's Algorithm

No complex data structure needed.

```
T is \emptyset (* T will store edges of a MST *)
while T is not spanning do
    X \leftarrow \emptysetfor each connected component S of T do
         add to X the cheapest edge between S and V \setminus SAdd edges in X to Treturn the set T
```
- \bullet $O(\log n)$ iterations of while loop. Why? Number of connected components shrink by at least half since each component merges with one or more other components.
- Each iteration can be implemented in $O(m)$ time.

Implementing Borůvka's Algorithm

No complex data structure needed.

```
T is \emptyset (* T will store edges of a MST *)
while T is not spanning do
    X \leftarrow \emptysetfor each connected component S of T do
         add to X the cheapest edge between S and V \setminus SAdd edges in X to Treturn the set T
```
- \bullet $O(\log n)$ iterations of while loop. Why? Number of connected components shrink by at least half since each component merges with one or more other components.
- Each iteration can be implemented in $O(m)$ time.

Running time: $O(m \log n)$ time.

Implementing Prim's Algorithm

```
Prim ComputeMST
    E is the set of all edges in GS = \{1\}T is empty (* T will store edges of a MST *)while S \neq V do
        pick e = (v, w) \in E such that
            v \in S and w \in V - Se has minimum cost
        T = T \cup eS = S \cup wreturn the set T
```
Analysis

Implementing Prim's Algorithm

```
Prim ComputeMST
    E is the set of all edges in GS = \{1\}T is empty (* T will store edges of a MST *)while S \neq V do
        pick e = (v, w) \in E such that
            v \in S and w \in V - Se has minimum cost
        T = T \cup eS = S \cup wreturn the set T
```
Analysis

1 Number of iterations $= O(n)$, where *n* is number of vertices

Implementing Prim's Algorithm

```
Prim ComputeMST
    E is the set of all edges in GS = \{1\}T is empty (* T will store edges of a MST *)while S \neq V do
        pick e = (v, w) \in E such that
            v \in S and w \in V - Se has minimum cost
        T = T \cup eS = S \cup wreturn the set T
```
Analysis

- **1** Number of iterations $= O(n)$, where *n* is number of vertices
- **2** Picking **e** is $O(m)$ where **m** is the number of edges

Implementing Prim's Algorithm

```
Prim ComputeMST
    E is the set of all edges in GS = \{1\}T is empty (* T will store edges of a MST *)while S \neq V do
        pick e = (v, w) \in E such that
            v \in S and w \in V - Se has minimum cost
        T = T \cup eS = S \cup wreturn the set T
```
Analysis

- **1** Number of iterations $= O(n)$, where *n* is number of vertices
- **2** Picking **e** is $O(m)$ where **m** is the number of edges
- **3** Total time $O(nm)$

Implementing Prim's Algorithm More Efficient Implementation

```
Prim ComputeMST
    E is the set of all edges in GS = \{1\}T is empty (* T will store edges of a MST *)for v \notin S, a(v) = \min_{w \in S} c(w, v)for v \notin S, e(v) = w such that w \in S and c(w, v) is minimum
    while S \neq V do
        pick v with minimum a(v)T = T \cup \{(e(v), v)\}\S = S \cup \{v\}update arrays a and e
    return the set T
```
Implementing Prim's Algorithm More Efficient Implementation

```
Prim ComputeMST
    E is the set of all edges in GS = \{1\}T is empty (* T will store edges of a MST *)for v \notin S, a(v) = \min_{w \in S} c(w, v)for v \notin S, e(v) = w such that w \in S and c(w, v) is minimum
    while S \neq V do
        pick v with minimum a(v)T = T \cup \{(e(v), v)\}\S = S \cup \{v\}update arrays a and e
    return the set T
```
Implementing Prim's Algorithm More Efficient Implementation

Maintain vertices in $V \setminus S$ in a priority queue with key $a(v)$.

Priority Queues

Data structure to store a set S of n elements where each element $v \in S$ has an associated real/integer key $k(v)$ such that the following operations

- **1** makeQ: create an empty queue
- **2** findMin: find the minimum key in S
- \bullet **extractMin**: Remove $v \in S$ with smallest key and return it
- add(v, $k(v)$): Add new element v with key $k(v)$ to S
- **Delete(v):** Remove element **v** from S
- **O** decreaseKey $(v, k'(v))$: decrease key of v from $k(v)$ (current key) to $k'(\nu)$ (new key). Assumption: $k'(\nu) \leq k(\nu)$
- **2** meld: merge two separate priority queues into one

Prim's using priority queues

```
E is the set of all edges in GS = \{1\}T is empty (* T will store edges of a MST *)for v \notin S, a(v) = \min_{w \in S} c(w, v)for v \notin S, e(v) = w such that w \in S and c(w, v) is minimum
while S \neq V do
    pick v with minimum a(v)T = T \cup \{(e(v), v)\}\S = S \cup \{v\}update arrays a and ereturn the set T
```
Maintain vertices in $V \setminus S$ in a priority queue with key $a(v)$

Prim's using priority queues

```
E is the set of all edges in GS = \{1\}T is empty (* T will store edges of a MST *)for v \notin S, a(v) = \min_{w \in S} c(w, v)for v \notin S, e(v) = w such that w \in S and c(w, v) is minimum
while S \neq V do
    pick v with minimum a(v)T = T \cup \{(e(v), v)\}\S = S \cup \{v\}update arrays a and ereturn the set T
```
Maintain vertices in $V \setminus S$ in a priority queue with key $a(v)$

```
1 Requires O(n) extractMin operations
```
Prim's using priority queues

```
E is the set of all edges in GS = \{1\}T is empty (* T will store edges of a MST *)for v \notin S, a(v) = \min_{w \in S} c(w, v)for v \notin S, e(v) = w such that w \in S and c(w, v) is minimum
while S \neq V do
    pick v with minimum a(v)T = T \cup \{(e(v), v)\}\S = S \cup \{v\}update arrays a and e
return the set T
```
Maintain vertices in $V \setminus S$ in a priority queue with key $a(v)$

- \bullet Requires $O(n)$ extractMin operations
- **2** Requires $O(m)$ decreaseKey operations

Running time of Prim's Algorithm

 $O(n)$ extractMin operations and $O(m)$ decreaseKey operations

- **1** Using standard Heaps, extractMin and decreaseKey take $O(\log n)$ time. Total: $O((m + n) \log n)$
- **2** Using Fibonacci Heaps, $O(\log n)$ for extractMin and $O(1)$ (amortized) for decreaseKey. Total: $O(n \log n + m)$.

Running time of Prim's Algorithm

 $O(n)$ extractMin operations and $O(m)$ decreaseKey operations

- **1** Using standard Heaps, extractMin and decreaseKey take $O(\log n)$ time. Total: $O((m + n) \log n)$
- \bullet Using Fibonacci Heaps, $O(\log n)$ for extractMin and $O(1)$ (amortized) for decreaseKey. Total: $O(n \log n + m)$.

Prim's algorithm and Dijkstra's algorithms are similar. Where is the difference?

1 Presort edges based on cost. Choosing minimum can be done in $O(1)$ time

1 Presort edges based on cost. Choosing minimum can be done in $O(1)$ time

- **1** Presort edges based on cost. Choosing minimum can be done in $O(1)$ time
- 2 Do BFS/DFS on $T \cup \{e\}$. Takes $O(n)$ time

- **1** Presort edges based on cost. Choosing minimum can be done in $O(1)$ time
- **2** Do BFS/DFS on $T \cup \{e\}$. Takes $O(n)$ time
- **3** Total time $O(m \log m) + O(mn) = O(mn)$

Implementing Kruskal's Algorithm Efficiently

Implementing Kruskal's Algorithm Efficiently

Need a data structure to check if two elements belong to same set and to merge two sets.

Implementing Kruskal's Algorithm Efficiently

```
Kruskal ComputeMST
    Sort edges in E based on cost
    T is empty (* T will store edges of a MST *)each vertex \boldsymbol{u} is placed in a set by itself
    while E is not empty do
        pick e = (u, v) \in E of minimum cost
        if u and v belong to different sets
            add e to Tmerge the sets containing u and vreturn the set T
```
Need a data structure to check if two elements belong to same set and to merge two sets.

Using Union-Find data structure can implement Kruskal's algorithm in $O((m + n) \log m)$ time.

Best Known Asymptotic Running Times for MST

Prim's algorithm using Fibonacci heaps: $O(n \log n + m)$. If m is $O(n)$ then running time is $\Omega(n \log n)$.

Best Known Asymptotic Running Times for MST

Prim's algorithm using Fibonacci heaps: $O(n \log n + m)$. If m is $O(n)$ then running time is $\Omega(n \log n)$.

Question

Is there a linear time $(O(m + n)$ time) algorithm for MST?

Best Known Asymptotic Running Times for MST

Prim's algorithm using Fibonacci heaps: $O(n \log n + m)$. If m is $O(n)$ then running time is $\Omega(n \log n)$.

Question

Is there a linear time $(O(m + n)$ time) algorithm for MST?

- \bigcirc $O(m \log^* m)$ time [Fredman, Tarjan 1987]
- \odot $O(m + n)$ time using bit operations in RAM model [Fredman, Willard 1994]
- \odot $O(m + n)$ expected time (randomized algorithm) [Karger, Klein, Tarjan 1995]
- \odot $O((n+m)\alpha(m,n))$ time Chazelle 2000]
- **•** Still open: Is there an $O(n + m)$ time deterministic algorithm in the comparison model?