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P and NP and Turing Machines

© P: set of decision problems that have polynomial time
algorithms.

@ NP: set of decision problems that have polynomial time
non-deterministic algorithms.

@ Many natural problems we would like to solve are in NP.
@ Every problem in NP has an exponential time algorithm
e PC NP

@ Some problems in NP are in P (example, shortest path problem)

Big Question: Does every problem in NP have an efficient
algorithm? Same as asking whether P = NP.
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Problems with no known polynomial time

algorithms

© Independent Set
© Vertex Cover

© Set Cover

Q@ SAT

© 3SAT

There are of course undecidable problems (no algorithm at all!) but
many problems that we want to solve are of similar flavor to the
above.

Question: What is common to above problems?
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Efficient Checkability

Above problems share the following feature:

Checkability

For any YES instance Ix of X there is a proof/certificate/solution

that is of length poly(|Ix|) such that given a proof one can efficiently
check that Ix is indeed a YES instance.
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Efficient Checkability

Above problems share the following feature:

Checkability

For any YES instance Ix of X there is a proof/certificate/solution
that is of length poly(|Ix|) such that given a proof one can efficiently
check that Ix is indeed a YES instance.

Examples:
© SAT formula : proof is a satisfying assignment.

@ Independent Set in graph G and k: a subset S of vertices.
© Homework
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Given n X n sudoku puzzle, does it have a solution?
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Certifiers

An algorithm C(, ) is a certifier for problem X if the following two
conditions hold:

o For every s € X there is some string t such that
C(s,t) ="yes"
o If s X, C(s,t) ="no" for every t.

The string t is called a certificate or proof for s.
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Efficient (polynomial time) Certifiers

Definition (Efficient Certifier.)

A certifier C is an efficient certifier for problem X if there is a
polynomial p(+) such that the following conditions hold:

@ For every s € X there is some string t such that
C(s,t) ="yes" and |t| < p(|s]).

o If s X, C(s,t) ="no" for every t.

e C(-,-) runs in polynomial time.
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Example: Independent Set

© Problem: Does G = (V, E) have an independent set of size
> k?
@ Certificate: Set S C V.
@ Certifier: Check |S| > k and no pair of vertices in S is
connected by an edge.
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Example: Vertex Cover

© Problem: Does G have a vertex cover of size < k7
@ Certificate: S C V.
@ Certifier: Check |S| < k and that for every edge at least one
endpoint is in S.
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Example: SAT

@ Problem: Does formula ¢ have a satisfying truth assignment?
© Certificate: Assignment a of 0/1 values to each variable.
@ Certifier: Check each clause under a and say “yes" if all clauses
are true.
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Example: Composites

Problem: Composite

Instance: A number s.
Question: Is the number s a composite?

© Problem: Composite.

@ Certificate: A factor t < ssuchthat t #1 and t # s.
@ Certifier: Check that t divides s.
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Example: NFA Universality

Problem: NFA Universality

Instance: Description of a NFA M.
Question: Is L(M) = X*, that is, does M accept all
strings?

© Problem: NFA Universality.

@ Certificate: A DFA M’ equivalent to M
@ Certifier: Check that L(M’) = X*
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Example: NFA Universality

Problem: NFA Universality

Instance: Description of a NFA M.
Question: Is L(M) = X*, that is, does M accept all
strings?

© Problem: NFA Universality.

@ Certificate: A DFA M’ equivalent to M
@ Certifier: Check that L(M’) = X*

Certifier is efficient but certificate is not necessarily short! We do not
know if the problem is in NP.
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Example: A String Problem

Problem: PCP

Instance: Two sets of binary strings ay,...,a, and

,81,...,,3,,

Question: Are there indices iy, i, ..., Ik such that
o0y oG = BB, - B,

@ Problem: PCP

@ Certificate: A sequence of indices i1, i2, . .., ik
@ Certifier: Check that aj o, - .. v, = Bi,Bi, - - - Bi,
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Example: A String Problem

Problem: PCP

Instance: Two sets of binary strings ay,...,a, and

,817“'9/8"

Question: Are there indices iy, i, ..., Ik such that
o0y oG = BB, - B,

@ Problem: PCP

@ Certificate: A sequence of indices i1, i2, . .., ik
@ Certifier: Check that aj o, - .. v, = Bi,Bi, - - - Bi,

PCP = Posts Correspondence Problem and it is undecidable!
Implies no finite bound on length of certificate!
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Nondeterministic Polynomial Time

Definition
Nondeterministic Polynomial Time (denoted by NP) is the class of
all problems that have efficient certifiers.

Chandra Chekuri (UIUC) CS/ECE 374 Fall 2018 15 / 43



Nondeterministic Polynomial Time

Definition
Nondeterministic Polynomial Time (denoted by NP) is the class of
all problems that have efficient certifiers.

| A

Example

Independent Set, Vertex Cover, Set Cover, SAT, 3SAT, and
Composite are all examples of problems in NP.

\
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Why is it called...

Nondeterministic Polynomial Time

A certifier is an algorithm C(/, c) with two inputs:
@ /: instance.

@ c: proof/certificate that the instance is indeed a YES instance
of the given problem.

One can think about C as an algorithm for the original problem, if:

@ Given /, the algorithm guesses (non-deterministically, and who
knows how) a certificate c.

@ The algorithm now verifies the certificate ¢ for the instance /.

NP can be equivalently described using Turing machines.
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Asymmetry in Definition of NP

Note that only YES instances have a short proof/certificate. NO
instances need not have a short certificate.

SAT formula . No easy way to prove that ¢ is NOT satisfiable! \

More on this and co-NP later on.
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Proposition
P C NP.
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Proposition
P C NP.

For a problem in P no need for a certificate!

Proof.
Consider problem X & P with algorithm A. Need to demonstrate
that X has an efficient certifier:

© Certifier C on input s, t, runs A(s) and returns the answer.

@ C runs in polynomial time.
@ If s € X, then for every t, C(s, t) ="yes".
Q If s & X, then for every t, C(s,t) ="no". O
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Exponential Time

Definition

Exponential Time (denoted EXP) is the collection of all problems
that have an algorithm which on input s runs in exponential time,

e, O(20o(ls]).
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Exponential Time

Definition

Exponential Time (denoted EXP) is the collection of all problems
that have an algorithm which on input s runs in exponential time,

e, O(20o(ls]).

Example: O(2"), O(2""&"), O(2™), ...
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NP versus EXP
Proposition
NP C EXP.

Let X € NP with certifier C. Need to design an exponential time
algorithm for X.

Q For every t, with |t| < p(|s]|) run C(s, t); answer “yes” if any
one of these calls returns “yes”.
@ The above algorithm correctly solves X (exercise).

@ Algorithm runs in O(q(|s| + |p(s)|)2P(D), where q is the
running time of C. ]

4
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@ SAT: try all possible truth assignment to variables.
@ Independent Set: try all possible subsets of vertices.
© Vertex Cover: try all possible subsets of vertices.
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Is NP efficiently solvable?

We know P C NP C EXP.
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Is NP efficiently solvable?

We know P C NP C EXP.

Blg Question

Is there are problem in NP that does not belong to P? Is P = NP?
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f P =NP...

Or: If pigs could fly then life would be sweet.

©@ Many important optimization problems can be solved efficiently.
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f P =NP...

Or: If pigs could fly then life would be sweet.

©@ Many important optimization problems can be solved efficiently.
@ The RSA cryptosystem can be broken.
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f P =NP...

Or: If pigs could fly then life would be sweet.

©@ Many important optimization problems can be solved efficiently.
@ The RSA cryptosystem can be broken.
© No security on the web.
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f P =NP...

Or: If pigs could fly then life would be sweet.

©@ Many important optimization problems can be solved efficiently.
@ The RSA cryptosystem can be broken.
© No security on the web.

@ No e-commerce ...
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f P =NP...

Or: If pigs could fly then life would be sweet.

©@ Many important optimization problems can be solved efficiently.
@ The RSA cryptosystem can be broken.

© No security on the web.

© No e-commerce ...

© Creativity can be automated! Proofs for mathematical statement
can be found by computers automatically (if short ones exist).
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this implies that...

(A) Vertex Cover can be solved in polynomial time.
(B) P = EXP.

(C) EXP C P,

(D) All of the above.
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Relationship between P and NP remains one of the most important
open problems in mathematics/computer science.

Consensus: Most people feel /believe P # NP.

Resolving P versus NP is a Clay Millennium Prize Problem. You can
win a million dollars in addition to a Turing award and major fame!
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Part 1l

NP-Completeness
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“Hardest” Problems
What is the hardest problem in NP? How do we define it? \

Towards a definition

© Hardest problem must be in NP.

@ Hardest problem must be at least as “difficult” as every other
problem in NP.
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NP-Complete Problems

Definition

A problem X is said to be NP-Complete if
Q@ X € NP, and
@ (Hardness) Forany Y € NP, Y <p X.
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Solving NP-Complete Problems

Suppose X is NP-Complete. Then X can be solved in polynomial
time if and only if P = NP.

Proof.
=> Suppose X can be solved in polynomial time

@ Let Y € NP. We know Y <p X.
@ We showed that if Y <p X and X can be solved in polynomial

time, then Y can be solved in polynomial time.
@ Thus, every problem Y &€ NP is such that Y € P; NP C P.

O Since P C NP, we have P = NP.
< Since P = NP, and X € NP, we have a polynomial time
algorithm for X. O
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NP-Hard Problems

Definition

A problem X is said to be NP-Hard if
@ (Hardness) For any Y € NP, we have that Y <p X.

An NP-Hard problem need not be in NP!

Example: Halting problem is NP-Hard (why?) but not
NP-Complete.
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Consequences of proving NP-Completeness

If X is NP-Complete

@ Since we believe P # NP,

@ and solving X implies P = NP.
X is unlikely to be efficiently solvable.
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Consequences of proving NP-Completeness

If X is NP-Complete

@ Since we believe P # NP,

@ and solving X implies P = NP.
X is unlikely to be efficiently solvable.

At the very least, many smart people before you have failed to find
an efficient algorithm for X.
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If X is NP-Complete

@ Since we believe P # NP,

@ and solving X implies P = NP.
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Consequences of proving NP-Completeness

If X is NP-Complete

@ Since we believe P # NP,

@ and solving X implies P = NP.
X is unlikely to be efficiently solvable.

At the very least, many smart people before you have failed to find

an efficient algorithm for X.
(This is proof by mob opinion — take with a grain of salt.)
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NP-Complete Problems

Are there any problems that are NP-Complete? \
Yes! Many, many problems are NP-Complete. \
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Cook-Levin Theorem

Theorem (Cook-Levin)
SAT is NP-Complete.
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Cook-Levin Theorem

Theorem (Cook-Levin)
SAT is NP-Complete.

Need to show
@ SAT isin NP.
@ every NP problem X reduces to SAT.

Will see proof in next lecture.

Steve Cook won the Turing award for his theorem.
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Proving that a problem X is NP-Complete

To prove X is NP-Complete, show
@ Show that X is in NP.

@ Give a polynomial-time reduction from a known NP-Complete
problem such as SAT to X
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Proving that a problem X is NP-Complete

To prove X is NP-Complete, show
@ Show that X is in NP.

@ Give a polynomial-time reduction from a known NP-Complete
problem such as SAT to X

SAT <p X implies that every NP problem Y <p X. Why?
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Proving that a problem X is NP-Complete

To prove X is NP-Complete, show
@ Show that X is in NP.

@ Give a polynomial-time reduction from a known NP-Complete
problem such as SAT to X

SAT <p X implies that every NP problem Y <p X. Why?
Transitivity of reductions:

Y <p SAT and SAT <p X and hence Y <p X.
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is NP-Complete

e 3-SAT isin NP
o SAT <p 3-SAT as we saw
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NP-Completeness via Reductions

SAT is NP-Complete due to Cook-Levin theorem
SAT <p 3-SAT

3-SAT <p Independent Set

Independent Set <p Vertex Cover
Independent Set <p Clique

3-SAT <p 3-Color

3-SAT <p Hamiltonian Cycle
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NP-Completeness via Reductions

SAT is NP-Complete due to Cook-Levin theorem
SAT <p 3-SAT

3-SAT <p Independent Set

Independent Set <p Vertex Cover
Independent Set <p Clique

3-SAT <p 3-Color

3-SAT <p Hamiltonian Cycle

Hundreds and thousands of different problems from many areas of
science and engineering have been shown to be NP-Complete.

A surprisingly frequent phenomenon!

Chandra Chekuri (UIUC) CS/ECE 374 Fall 2018 36 / 43



Part |11

Reducing
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Independent Set

Problem: Independent Set

Instance: A graph G, integer k.
Question: Is there an independent set in G of size k?
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3SAT <p Independent Set

The reduction 3SAT <p Independent Set

Input: Given a 3CNF formula ¢
Goal: Construct a graph G, and number k such that G, has an
independent set of size k if and only if ¢ is satisfiable.

Chandra Chekuri (UIUC) CS/ECE 374 39 Fall 2018 39 /43



3SAT <p Independent Set

The reduction 3SAT <p Independent Set

Input: Given a 3CNF formula ¢

Goal: Construct a graph G, and number k such that G, has an
independent set of size k if and only if ¢ is satisfiable.

G, should be constructable in time polynomial in size of ¢
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3SAT <p Independent Set

The reduction 3SAT <p Independent Set

Input: Given a 3CNF formula ¢

Goal: Construct a graph G, and number k such that G, has an
independent set of size k if and only if ¢ is satisfiable.

G, should be constructable in time polynomial in size of ¢

Importance of reduction: Although 3SAT is much more expressive, it
can be reduced to a seemingly specialized Independent Set problem.

Notice: We handle only 3CNF formulas — reduction would not work
for other kinds of boolean formulas.
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Interpreting 3SAT

There are two ways to think about 3SAT
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Interpreting 3SAT

There are two ways to think about 3SAT

© Find a way to assign 0/1 (false/true) to the variables such that
the formula evaluates to true, that is each clause evaluates to
true.
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Interpreting 3SAT

There are two ways to think about 3SAT

© Find a way to assign 0/1 (false/true) to the variables such that
the formula evaluates to true, that is each clause evaluates to
true.

@ Pick a literal from each clause and find a truth assignment to
make all of them true
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Interpreting 3SAT

There are two ways to think about 3SAT
© Find a way to assign 0/1 (false/true) to the variables such that
the formula evaluates to true, that is each clause evaluates to
true.

@ Pick a literal from each clause and find a truth assignment to
make all of them true. You will fail if two of the literals you pick
are in conflict, i.e., you pick x; and —x;

We will take the second view of 3SAT to construct the reduction.
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The Reduction

© G, will have one vertex for each literal in a clause

C) D @
®@®6 6 @

Figure: Graph for
P = (—lxl V x2 V X3) N (X1 V —x2 V X3) N (—|X1 V xo V X4)
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The Reduction

@ G, will have one vertex for each literal in a clause

@ Connect the 3 literals in a clause to form a triangle; the
independent set will pick at most one vertex from each clause,
which will correspond to the literal to be set to true

C) (=2 )
& @@ @ E @

Figure: Graph for
p = (—|X1 V x2 V X3) N (X1 V —x2 V X3) AN (—|X1 V x2 V X4)
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The Reduction

@ G, will have one vertex for each literal in a clause

@ Connect the 3 literals in a clause to form a triangle; the
independent set will pick at most one vertex from each clause,
which will correspond to the literal to be set to true

(o (= (=)
N o
(22— (C)—(=)] ()=

Figure: Graph for

p = (—|X1 V X2 \/X3) N (X1 V —Xx2 \/X3) AN (—|X1 V X2 \/X4)
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The Reduction

@ G, will have one vertex for each literal in a clause

@ Connect the 3 literals in a clause to form a triangle; the
independent set will pick at most one vertex from each clause,
which will correspond to the literal to be set to true

© Connect 2 vertices if they label complementary literals; this
ensures that the literals corresponding to the independent set do

not have a conflict %= O 11,: \
= |
4 3

Xy:-0

Alal-s
)] [ e

Figure: Graph for
@ = (; VX2\/X3)/\(X1\/—|X2\/X3 /\(—|X1 \@\/Xz;)
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The Reduction

© G, will have one vertex for each literal in a clause

@ Connect the 3 literals in a clause to form a triangle; the
independent set will pick at most one vertex from each clause,
which will correspond to the literal to be set to true

© Connect 2 vertices if they label complementary literals; this
ensures that the literals corresponding to the independent set do
not have a conflict

@ Take k to be the number of clauses

Figure: Graph for
p = (—lxl V x2 V X3) N (X1 V —x2 V X3) AN (—|X1 V x2 V X4)
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Correctness

@ Is satisfiable iff G, has an independent set of size k (= number of
clauses in ¢).

4

Proof.
= Let a be the truth assignment satisfying ¢
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Correctness

@ Is satisfiable iff G, has an independent set of size k (= number of
clauses in ¢).

4

Proof.

= Let a be the truth assignment satisfying ¢
@ Pick one of the vertices, corresponding to true literals under a,
from each triangle. This is an independent set of the
appropriate size. Why? O

vy
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Correctness (contd)

@ Is satisfiable iff G, has an independent set of size k (= number of
clauses in ¢).

4

Proof.
< Let S be an independent set of size k

@ S must contain exactly one vertex from each clause

@ S cannot contain vertices labeled by conflicting literals

@ Thus, it is possible to obtain a truth assignment that makes in
the literals in S true; such an assignment satisfies one literal in
every clause [

v
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