
CS/ECE 374: Algorithms & Models of

Computation, Fall 2018

NP and NP Completeness
Lecture 23
NOV 29, 2018

Chandra Chekuri (UIUC) CS/ECE 374 1 Fall 2018 1 / 43



Part I

NP

Chandra Chekuri (UIUC) CS/ECE 374 2 Fall 2018 2 / 43



P and NP and Turing Machines

1 P: set of decision problems that have polynomial time
algorithms.

2 NP: set of decision problems that have polynomial time
non-deterministic algorithms.

Many natural problems we would like to solve are in NP.

Every problem in NP has an exponential time algorithm

P ⊆ NP
Some problems in NP are in P (example, shortest path problem)

Big Question: Does every problem in NP have an efficient
algorithm? Same as asking whether P = NP.

Chandra Chekuri (UIUC) CS/ECE 374 3 Fall 2018 3 / 43



Problems with no known polynomial time

algorithms

Problems
1 Independent Set

2 Vertex Cover

3 Set Cover

4 SAT

5 3SAT

There are of course undecidable problems (no algorithm at all!) but
many problems that we want to solve are of similar flavor to the
above.

Question: What is common to above problems?

Chandra Chekuri (UIUC) CS/ECE 374 4 Fall 2018 4 / 43



Efficient Checkability

Above problems share the following feature:

Checkability

For any YES instance IX of X there is a proof/certificate/solution
that is of length poly(|IX |) such that given a proof one can efficiently
check that IX is indeed a YES instance.

Examples:

1 SAT formula ϕ: proof is a satisfying assignment.

2 Independent Set in graph G and k : a subset S of vertices.

3 Homework

Chandra Chekuri (UIUC) CS/ECE 374 5 Fall 2018 5 / 43



Efficient Checkability

Above problems share the following feature:

Checkability

For any YES instance IX of X there is a proof/certificate/solution
that is of length poly(|IX |) such that given a proof one can efficiently
check that IX is indeed a YES instance.

Examples:

1 SAT formula ϕ: proof is a satisfying assignment.

2 Independent Set in graph G and k : a subset S of vertices.

3 Homework

Chandra Chekuri (UIUC) CS/ECE 374 5 Fall 2018 5 / 43



Sudoku

Given n × n sudoku puzzle, does it have a solution?

Chandra Chekuri (UIUC) CS/ECE 374 6 Fall 2018 6 / 43



Certifiers

Definition
An algorithm C(·, ·) is a certifier for problem X if the following two
conditions hold:

For every s ∈ X there is some string t such that
C(s, t) = ”yes”

If s 6∈ X , C(s, t) = ”no” for every t.

The string t is called a certificate or proof for s.

Chandra Chekuri (UIUC) CS/ECE 374 7 Fall 2018 7 / 43



Efficient (polynomial time) Certifiers

Definition (Efficient Certifier.)

A certifier C is an efficient certifier for problem X if there is a
polynomial p(·) such that the following conditions hold:

For every s ∈ X there is some string t such that
C(s, t) = ”yes” and |t| ≤ p(|s|).

If s 6∈ X , C(s, t) = ”no” for every t.

C(·, ·) runs in polynomial time.

Chandra Chekuri (UIUC) CS/ECE 374 8 Fall 2018 8 / 43



Example: Independent Set

1 Problem: Does G = (V ,E) have an independent set of size
≥ k?

1 Certificate: Set S ⊆ V .
2 Certifier: Check |S| ≥ k and no pair of vertices in S is

connected by an edge.

Chandra Chekuri (UIUC) CS/ECE 374 9 Fall 2018 9 / 43



Example: Vertex Cover

1 Problem: Does G have a vertex cover of size ≤ k?
1 Certificate: S ⊆ V .
2 Certifier: Check |S| ≤ k and that for every edge at least one

endpoint is in S .

Chandra Chekuri (UIUC) CS/ECE 374 10 Fall 2018 10 / 43



Example: SAT

1 Problem: Does formula ϕ have a satisfying truth assignment?
1 Certificate: Assignment a of 0/1 values to each variable.
2 Certifier: Check each clause under a and say “yes” if all clauses

are true.

Chandra Chekuri (UIUC) CS/ECE 374 11 Fall 2018 11 / 43



Example: Composites

Problem: Composite

Instance: A number s.
Question: Is the number s a composite?

1 Problem: Composite.
1 Certificate: A factor t ≤ s such that t 6= 1 and t 6= s.
2 Certifier: Check that t divides s.

Chandra Chekuri (UIUC) CS/ECE 374 12 Fall 2018 12 / 43



Example: NFA Universality

Problem: NFA Universality

Instance: Description of a NFA M .
Question: Is L(M) = Σ∗, that is, does M accept all
strings?

1 Problem: NFA Universality.
1 Certificate: A DFA M ′ equivalent to M
2 Certifier: Check that L(M ′) = Σ∗

Certifier is efficient but certificate is not necessarily short! We do not
know if the problem is in NP.

Chandra Chekuri (UIUC) CS/ECE 374 13 Fall 2018 13 / 43



Example: NFA Universality

Problem: NFA Universality

Instance: Description of a NFA M .
Question: Is L(M) = Σ∗, that is, does M accept all
strings?

1 Problem: NFA Universality.
1 Certificate: A DFA M ′ equivalent to M
2 Certifier: Check that L(M ′) = Σ∗

Certifier is efficient but certificate is not necessarily short! We do not
know if the problem is in NP.

Chandra Chekuri (UIUC) CS/ECE 374 13 Fall 2018 13 / 43



Example: A String Problem

Problem: PCP

Instance: Two sets of binary strings α1, . . . , αn and
β1, . . . , βn
Question: Are there indices i1, i2, . . . , ik such that
αi1αi2 . . . αik = βi1βi2 . . . βik

1 Problem: PCP
1 Certificate: A sequence of indices i1, i2, . . . , ik
2 Certifier: Check that αi1αi2 . . . αik = βi1βi2 . . . βik

PCP = Posts Correspondence Problem and it is undecidable!
Implies no finite bound on length of certificate!

Chandra Chekuri (UIUC) CS/ECE 374 14 Fall 2018 14 / 43



Example: A String Problem

Problem: PCP

Instance: Two sets of binary strings α1, . . . , αn and
β1, . . . , βn
Question: Are there indices i1, i2, . . . , ik such that
αi1αi2 . . . αik = βi1βi2 . . . βik

1 Problem: PCP
1 Certificate: A sequence of indices i1, i2, . . . , ik
2 Certifier: Check that αi1αi2 . . . αik = βi1βi2 . . . βik

PCP = Posts Correspondence Problem and it is undecidable!
Implies no finite bound on length of certificate!

Chandra Chekuri (UIUC) CS/ECE 374 14 Fall 2018 14 / 43



Nondeterministic Polynomial Time

Definition
Nondeterministic Polynomial Time (denoted by NP) is the class of
all problems that have efficient certifiers.

Chandra Chekuri (UIUC) CS/ECE 374 15 Fall 2018 15 / 43



Nondeterministic Polynomial Time

Definition
Nondeterministic Polynomial Time (denoted by NP) is the class of
all problems that have efficient certifiers.

Example
Independent Set, Vertex Cover, Set Cover, SAT, 3SAT, and
Composite are all examples of problems in NP.

Chandra Chekuri (UIUC) CS/ECE 374 15 Fall 2018 15 / 43



Why is it called...
Nondeterministic Polynomial Time

A certifier is an algorithm C(I , c) with two inputs:

1 I : instance.

2 c : proof/certificate that the instance is indeed a YES instance
of the given problem.

One can think about C as an algorithm for the original problem, if:

1 Given I , the algorithm guesses (non-deterministically, and who
knows how) a certificate c .

2 The algorithm now verifies the certificate c for the instance I .

NP can be equivalently described using Turing machines.

Chandra Chekuri (UIUC) CS/ECE 374 16 Fall 2018 16 / 43



Asymmetry in Definition of NP

Note that only YES instances have a short proof/certificate. NO
instances need not have a short certificate.

Example
SAT formula ϕ. No easy way to prove that ϕ is NOT satisfiable!

More on this and co-NP later on.

Chandra Chekuri (UIUC) CS/ECE 374 17 Fall 2018 17 / 43



P versus NP

Proposition
P ⊆ NP.

For a problem in P no need for a certificate!

Proof.
Consider problem X ∈ P with algorithm A. Need to demonstrate
that X has an efficient certifier:

1 Certifier C on input s, t, runs A(s) and returns the answer.

2 C runs in polynomial time.

3 If s ∈ X , then for every t, C(s, t) = ”yes”.

4 If s 6∈ X , then for every t, C(s, t) = ”no”.

Chandra Chekuri (UIUC) CS/ECE 374 18 Fall 2018 18 / 43



P versus NP

Proposition
P ⊆ NP.

For a problem in P no need for a certificate!

Proof.
Consider problem X ∈ P with algorithm A. Need to demonstrate
that X has an efficient certifier:

1 Certifier C on input s, t, runs A(s) and returns the answer.

2 C runs in polynomial time.

3 If s ∈ X , then for every t, C(s, t) = ”yes”.

4 If s 6∈ X , then for every t, C(s, t) = ”no”.

Chandra Chekuri (UIUC) CS/ECE 374 18 Fall 2018 18 / 43



Exponential Time

Definition
Exponential Time (denoted EXP) is the collection of all problems
that have an algorithm which on input s runs in exponential time,
i.e., O(2poly(|s|)).

Example: O(2n), O(2n log n), O(2n3
), ...

Chandra Chekuri (UIUC) CS/ECE 374 19 Fall 2018 19 / 43



Exponential Time

Definition
Exponential Time (denoted EXP) is the collection of all problems
that have an algorithm which on input s runs in exponential time,
i.e., O(2poly(|s|)).

Example: O(2n), O(2n log n), O(2n3
), ...

Chandra Chekuri (UIUC) CS/ECE 374 19 Fall 2018 19 / 43



NP versus EXP

Proposition
NP ⊆ EXP.

Proof.
Let X ∈ NP with certifier C . Need to design an exponential time
algorithm for X .

1 For every t, with |t| ≤ p(|s|) run C(s, t); answer “yes” if any
one of these calls returns “yes”.

2 The above algorithm correctly solves X (exercise).

3 Algorithm runs in O(q(|s|+ |p(s)|)2p(|s|)), where q is the
running time of C .

Chandra Chekuri (UIUC) CS/ECE 374 20 Fall 2018 20 / 43



Examples

1 SAT: try all possible truth assignment to variables.

2 Independent Set: try all possible subsets of vertices.

3 Vertex Cover: try all possible subsets of vertices.

Chandra Chekuri (UIUC) CS/ECE 374 21 Fall 2018 21 / 43



Is NP efficiently solvable?

We know P ⊆ NP ⊆ EXP.

Chandra Chekuri (UIUC) CS/ECE 374 22 Fall 2018 22 / 43



Is NP efficiently solvable?

We know P ⊆ NP ⊆ EXP.

Big Question

Is there are problem in NP that does not belong to P? Is P = NP?

Chandra Chekuri (UIUC) CS/ECE 374 22 Fall 2018 22 / 43



If P = NP . . .
Or: If pigs could fly then life would be sweet.

1 Many important optimization problems can be solved efficiently.

2 The RSA cryptosystem can be broken.

3 No security on the web.

4 No e-commerce . . .

5 Creativity can be automated! Proofs for mathematical statement
can be found by computers automatically (if short ones exist).

Chandra Chekuri (UIUC) CS/ECE 374 23 Fall 2018 23 / 43



If P = NP . . .
Or: If pigs could fly then life would be sweet.

1 Many important optimization problems can be solved efficiently.

2 The RSA cryptosystem can be broken.

3 No security on the web.

4 No e-commerce . . .

5 Creativity can be automated! Proofs for mathematical statement
can be found by computers automatically (if short ones exist).

Chandra Chekuri (UIUC) CS/ECE 374 23 Fall 2018 23 / 43



If P = NP . . .
Or: If pigs could fly then life would be sweet.

1 Many important optimization problems can be solved efficiently.

2 The RSA cryptosystem can be broken.

3 No security on the web.

4 No e-commerce . . .

5 Creativity can be automated! Proofs for mathematical statement
can be found by computers automatically (if short ones exist).

Chandra Chekuri (UIUC) CS/ECE 374 23 Fall 2018 23 / 43



If P = NP . . .
Or: If pigs could fly then life would be sweet.

1 Many important optimization problems can be solved efficiently.

2 The RSA cryptosystem can be broken.

3 No security on the web.

4 No e-commerce . . .

5 Creativity can be automated! Proofs for mathematical statement
can be found by computers automatically (if short ones exist).

Chandra Chekuri (UIUC) CS/ECE 374 23 Fall 2018 23 / 43



If P = NP . . .
Or: If pigs could fly then life would be sweet.

1 Many important optimization problems can be solved efficiently.

2 The RSA cryptosystem can be broken.

3 No security on the web.

4 No e-commerce . . .

5 Creativity can be automated! Proofs for mathematical statement
can be found by computers automatically (if short ones exist).

Chandra Chekuri (UIUC) CS/ECE 374 23 Fall 2018 23 / 43



If P = NP this implies that...

(A) Vertex Cover can be solved in polynomial time.

(B) P = EXP.

(C) EXP ⊆ P.

(D) All of the above.

Chandra Chekuri (UIUC) CS/ECE 374 24 Fall 2018 24 / 43



P versus NP

Status
Relationship between P and NP remains one of the most important
open problems in mathematics/computer science.

Consensus: Most people feel/believe P 6= NP.

Resolving P versus NP is a Clay Millennium Prize Problem. You can
win a million dollars in addition to a Turing award and major fame!

Chandra Chekuri (UIUC) CS/ECE 374 25 Fall 2018 25 / 43



Part II

NP-Completeness

Chandra Chekuri (UIUC) CS/ECE 374 26 Fall 2018 26 / 43



“Hardest” Problems

Question
What is the hardest problem in NP? How do we define it?

Towards a definition
1 Hardest problem must be in NP.

2 Hardest problem must be at least as “difficult” as every other
problem in NP.

Chandra Chekuri (UIUC) CS/ECE 374 27 Fall 2018 27 / 43



NP-Complete Problems

Definition
A problem X is said to be NP-Complete if

1 X ∈ NP, and

2 (Hardness) For any Y ∈ NP, Y ≤P X.

Chandra Chekuri (UIUC) CS/ECE 374 28 Fall 2018 28 / 43



Solving NP-Complete Problems

Proposition
Suppose X is NP-Complete. Then X can be solved in polynomial
time if and only if P = NP.

Proof.
⇒ Suppose X can be solved in polynomial time

1 Let Y ∈ NP. We know Y ≤P X.
2 We showed that if Y ≤P X and X can be solved in polynomial

time, then Y can be solved in polynomial time.
3 Thus, every problem Y ∈ NP is such that Y ∈ P; NP ⊆ P.
4 Since P ⊆ NP, we have P = NP.

⇐ Since P = NP, and X ∈ NP, we have a polynomial time
algorithm for X .

Chandra Chekuri (UIUC) CS/ECE 374 29 Fall 2018 29 / 43



NP-Hard Problems

Definition
A problem X is said to be NP-Hard if

1 (Hardness) For any Y ∈ NP, we have that Y ≤P X.

An NP-Hard problem need not be in NP!

Example: Halting problem is NP-Hard (why?) but not
NP-Complete.

Chandra Chekuri (UIUC) CS/ECE 374 30 Fall 2018 30 / 43



Consequences of proving NP-Completeness

If X is NP-Complete

1 Since we believe P 6= NP,

2 and solving X implies P = NP.

X is unlikely to be efficiently solvable.

At the very least, many smart people before you have failed to find
an efficient algorithm for X .
(This is proof by mob opinion — take with a grain of salt.)

Chandra Chekuri (UIUC) CS/ECE 374 31 Fall 2018 31 / 43



Consequences of proving NP-Completeness

If X is NP-Complete

1 Since we believe P 6= NP,

2 and solving X implies P = NP.

X is unlikely to be efficiently solvable.

At the very least, many smart people before you have failed to find
an efficient algorithm for X .

(This is proof by mob opinion — take with a grain of salt.)

Chandra Chekuri (UIUC) CS/ECE 374 31 Fall 2018 31 / 43



Consequences of proving NP-Completeness

If X is NP-Complete

1 Since we believe P 6= NP,

2 and solving X implies P = NP.

X is unlikely to be efficiently solvable.

At the very least, many smart people before you have failed to find
an efficient algorithm for X .

(This is proof by mob opinion — take with a grain of salt.)

Chandra Chekuri (UIUC) CS/ECE 374 31 Fall 2018 31 / 43



Consequences of proving NP-Completeness

If X is NP-Complete

1 Since we believe P 6= NP,

2 and solving X implies P = NP.

X is unlikely to be efficiently solvable.

At the very least, many smart people before you have failed to find
an efficient algorithm for X .
(This is proof by mob opinion — take with a grain of salt.)

Chandra Chekuri (UIUC) CS/ECE 374 31 Fall 2018 31 / 43



NP-Complete Problems

Question
Are there any problems that are NP-Complete?

Answer
Yes! Many, many problems are NP-Complete.

Chandra Chekuri (UIUC) CS/ECE 374 32 Fall 2018 32 / 43



Cook-Levin Theorem

Theorem (Cook-Levin)

SAT is NP-Complete.

Need to show

1 SAT is in NP.

2 every NP problem X reduces to SAT.

Will see proof in next lecture.

Steve Cook won the Turing award for his theorem.

Chandra Chekuri (UIUC) CS/ECE 374 33 Fall 2018 33 / 43



Cook-Levin Theorem

Theorem (Cook-Levin)

SAT is NP-Complete.

Need to show

1 SAT is in NP.

2 every NP problem X reduces to SAT.

Will see proof in next lecture.

Steve Cook won the Turing award for his theorem.

Chandra Chekuri (UIUC) CS/ECE 374 33 Fall 2018 33 / 43



Proving that a problem X is NP-Complete

To prove X is NP-Complete, show

1 Show that X is in NP.

2 Give a polynomial-time reduction from a known NP-Complete
problem such as SAT to X

SAT ≤P X implies that every NP problem Y ≤P X . Why?
Transitivity of reductions:

Y ≤P SAT and SAT ≤P X and hence Y ≤P X .

Chandra Chekuri (UIUC) CS/ECE 374 34 Fall 2018 34 / 43



Proving that a problem X is NP-Complete

To prove X is NP-Complete, show

1 Show that X is in NP.

2 Give a polynomial-time reduction from a known NP-Complete
problem such as SAT to X

SAT ≤P X implies that every NP problem Y ≤P X . Why?

Transitivity of reductions:

Y ≤P SAT and SAT ≤P X and hence Y ≤P X .

Chandra Chekuri (UIUC) CS/ECE 374 34 Fall 2018 34 / 43



Proving that a problem X is NP-Complete

To prove X is NP-Complete, show

1 Show that X is in NP.

2 Give a polynomial-time reduction from a known NP-Complete
problem such as SAT to X

SAT ≤P X implies that every NP problem Y ≤P X . Why?
Transitivity of reductions:

Y ≤P SAT and SAT ≤P X and hence Y ≤P X .

Chandra Chekuri (UIUC) CS/ECE 374 34 Fall 2018 34 / 43



3-SAT is NP-Complete

3-SAT is in NP
SAT ≤P 3-SAT as we saw

Chandra Chekuri (UIUC) CS/ECE 374 35 Fall 2018 35 / 43



NP-Completeness via Reductions

1 SAT is NP-Complete due to Cook-Levin theorem

2 SAT ≤P 3-SAT

3 3-SAT ≤P Independent Set

4 Independent Set ≤P Vertex Cover

5 Independent Set ≤P Clique

6 3-SAT ≤P 3-Color

7 3-SAT ≤P Hamiltonian Cycle

Hundreds and thousands of different problems from many areas of
science and engineering have been shown to be NP-Complete.

A surprisingly frequent phenomenon!

Chandra Chekuri (UIUC) CS/ECE 374 36 Fall 2018 36 / 43



NP-Completeness via Reductions

1 SAT is NP-Complete due to Cook-Levin theorem

2 SAT ≤P 3-SAT

3 3-SAT ≤P Independent Set

4 Independent Set ≤P Vertex Cover

5 Independent Set ≤P Clique

6 3-SAT ≤P 3-Color

7 3-SAT ≤P Hamiltonian Cycle

Hundreds and thousands of different problems from many areas of
science and engineering have been shown to be NP-Complete.

A surprisingly frequent phenomenon!

Chandra Chekuri (UIUC) CS/ECE 374 36 Fall 2018 36 / 43



Part III

Reducing 3-SAT to Independent
Set

Chandra Chekuri (UIUC) CS/ECE 374 37 Fall 2018 37 / 43



Independent Set

Problem: Independent Set

Instance: A graph G, integer k .
Question: Is there an independent set in G of size k?

Chandra Chekuri (UIUC) CS/ECE 374 38 Fall 2018 38 / 43



3SAT ≤P Independent Set

The reduction 3SAT ≤P Independent Set
Input: Given a 3CNF formula ϕ
Goal: Construct a graph Gϕ and number k such that Gϕ has an
independent set of size k if and only if ϕ is satisfiable.

Gϕ should be constructable in time polynomial in size of ϕ

Importance of reduction: Although 3SAT is much more expressive, it
can be reduced to a seemingly specialized Independent Set problem.

Notice: We handle only 3CNF formulas – reduction would not work
for other kinds of boolean formulas.

Chandra Chekuri (UIUC) CS/ECE 374 39 Fall 2018 39 / 43



3SAT ≤P Independent Set

The reduction 3SAT ≤P Independent Set
Input: Given a 3CNF formula ϕ
Goal: Construct a graph Gϕ and number k such that Gϕ has an
independent set of size k if and only if ϕ is satisfiable.
Gϕ should be constructable in time polynomial in size of ϕ

Importance of reduction: Although 3SAT is much more expressive, it
can be reduced to a seemingly specialized Independent Set problem.

Notice: We handle only 3CNF formulas – reduction would not work
for other kinds of boolean formulas.

Chandra Chekuri (UIUC) CS/ECE 374 39 Fall 2018 39 / 43



3SAT ≤P Independent Set

The reduction 3SAT ≤P Independent Set
Input: Given a 3CNF formula ϕ
Goal: Construct a graph Gϕ and number k such that Gϕ has an
independent set of size k if and only if ϕ is satisfiable.
Gϕ should be constructable in time polynomial in size of ϕ

Importance of reduction: Although 3SAT is much more expressive, it
can be reduced to a seemingly specialized Independent Set problem.

Notice: We handle only 3CNF formulas – reduction would not work
for other kinds of boolean formulas.

Chandra Chekuri (UIUC) CS/ECE 374 39 Fall 2018 39 / 43



Interpreting 3SAT

There are two ways to think about 3SAT

1 Find a way to assign 0/1 (false/true) to the variables such that
the formula evaluates to true, that is each clause evaluates to
true.

2 Pick a literal from each clause and find a truth assignment to
make all of them true

. You will fail if two of the literals you pick
are in conflict, i.e., you pick xi and ¬xi

We will take the second view of 3SAT to construct the reduction.

Chandra Chekuri (UIUC) CS/ECE 374 40 Fall 2018 40 / 43



Interpreting 3SAT

There are two ways to think about 3SAT

1 Find a way to assign 0/1 (false/true) to the variables such that
the formula evaluates to true, that is each clause evaluates to
true.

2 Pick a literal from each clause and find a truth assignment to
make all of them true

. You will fail if two of the literals you pick
are in conflict, i.e., you pick xi and ¬xi

We will take the second view of 3SAT to construct the reduction.

Chandra Chekuri (UIUC) CS/ECE 374 40 Fall 2018 40 / 43



Interpreting 3SAT

There are two ways to think about 3SAT

1 Find a way to assign 0/1 (false/true) to the variables such that
the formula evaluates to true, that is each clause evaluates to
true.

2 Pick a literal from each clause and find a truth assignment to
make all of them true

. You will fail if two of the literals you pick
are in conflict, i.e., you pick xi and ¬xi

We will take the second view of 3SAT to construct the reduction.

Chandra Chekuri (UIUC) CS/ECE 374 40 Fall 2018 40 / 43



Interpreting 3SAT

There are two ways to think about 3SAT

1 Find a way to assign 0/1 (false/true) to the variables such that
the formula evaluates to true, that is each clause evaluates to
true.

2 Pick a literal from each clause and find a truth assignment to
make all of them true. You will fail if two of the literals you pick
are in conflict, i.e., you pick xi and ¬xi

We will take the second view of 3SAT to construct the reduction.

Chandra Chekuri (UIUC) CS/ECE 374 40 Fall 2018 40 / 43



The Reduction

1 Gϕ will have one vertex for each literal in a clause

2 Connect the 3 literals in a clause to form a triangle; the
independent set will pick at most one vertex from each clause,
which will correspond to the literal to be set to true

3 Connect 2 vertices if they label complementary literals; this
ensures that the literals corresponding to the independent set do
not have a conflict

4 Take k to be the number of clauses

¬x1 ¬x2 ¬x1

x1 x3x3x2 x2 x4

Figure: Graph for
ϕ = (¬x1 ∨ x2 ∨ x3) ∧ (x1 ∨ ¬x2 ∨ x3) ∧ (¬x1 ∨ x2 ∨ x4)

Chandra Chekuri (UIUC) CS/ECE 374 41 Fall 2018 41 / 43



The Reduction

1 Gϕ will have one vertex for each literal in a clause
2 Connect the 3 literals in a clause to form a triangle; the

independent set will pick at most one vertex from each clause,
which will correspond to the literal to be set to true

3 Connect 2 vertices if they label complementary literals; this
ensures that the literals corresponding to the independent set do
not have a conflict

4 Take k to be the number of clauses

¬x1 ¬x2 ¬x1

x1 x3x3x2 x2 x4

Figure: Graph for
ϕ = (¬x1 ∨ x2 ∨ x3) ∧ (x1 ∨ ¬x2 ∨ x3) ∧ (¬x1 ∨ x2 ∨ x4)

Chandra Chekuri (UIUC) CS/ECE 374 41 Fall 2018 41 / 43



The Reduction

1 Gϕ will have one vertex for each literal in a clause
2 Connect the 3 literals in a clause to form a triangle; the

independent set will pick at most one vertex from each clause,
which will correspond to the literal to be set to true

3 Connect 2 vertices if they label complementary literals; this
ensures that the literals corresponding to the independent set do
not have a conflict

4 Take k to be the number of clauses

¬x1 ¬x2 ¬x1

x1 x3x3x2 x2 x4

Figure: Graph for
ϕ = (¬x1 ∨ x2 ∨ x3) ∧ (x1 ∨ ¬x2 ∨ x3) ∧ (¬x1 ∨ x2 ∨ x4)

Chandra Chekuri (UIUC) CS/ECE 374 41 Fall 2018 41 / 43



The Reduction

1 Gϕ will have one vertex for each literal in a clause
2 Connect the 3 literals in a clause to form a triangle; the

independent set will pick at most one vertex from each clause,
which will correspond to the literal to be set to true

3 Connect 2 vertices if they label complementary literals; this
ensures that the literals corresponding to the independent set do
not have a conflict

4 Take k to be the number of clauses

¬x1 ¬x2 ¬x1

x1 x3x3x2 x2 x4

Figure: Graph for
ϕ = (¬x1 ∨ x2 ∨ x3) ∧ (x1 ∨ ¬x2 ∨ x3) ∧ (¬x1 ∨ x2 ∨ x4)

Chandra Chekuri (UIUC) CS/ECE 374 41 Fall 2018 41 / 43



The Reduction

1 Gϕ will have one vertex for each literal in a clause
2 Connect the 3 literals in a clause to form a triangle; the

independent set will pick at most one vertex from each clause,
which will correspond to the literal to be set to true

3 Connect 2 vertices if they label complementary literals; this
ensures that the literals corresponding to the independent set do
not have a conflict

4 Take k to be the number of clauses

¬x1 ¬x2 ¬x1

x1 x3x3x2 x2 x4

Figure: Graph for
ϕ = (¬x1 ∨ x2 ∨ x3) ∧ (x1 ∨ ¬x2 ∨ x3) ∧ (¬x1 ∨ x2 ∨ x4)

Chandra Chekuri (UIUC) CS/ECE 374 41 Fall 2018 41 / 43



Correctness

Proposition

ϕ is satisfiable iff Gϕ has an independent set of size k (= number of
clauses in ϕ).

Proof.
⇒ Let a be the truth assignment satisfying ϕ

1 Pick one of the vertices, corresponding to true literals under a,
from each triangle. This is an independent set of the
appropriate size. Why?

Chandra Chekuri (UIUC) CS/ECE 374 42 Fall 2018 42 / 43



Correctness

Proposition

ϕ is satisfiable iff Gϕ has an independent set of size k (= number of
clauses in ϕ).

Proof.
⇒ Let a be the truth assignment satisfying ϕ

1 Pick one of the vertices, corresponding to true literals under a,
from each triangle. This is an independent set of the
appropriate size. Why?

Chandra Chekuri (UIUC) CS/ECE 374 42 Fall 2018 42 / 43



Correctness (contd)

Proposition

ϕ is satisfiable iff Gϕ has an independent set of size k (= number of
clauses in ϕ).

Proof.
⇐ Let S be an independent set of size k

1 S must contain exactly one vertex from each clause
2 S cannot contain vertices labeled by conflicting literals
3 Thus, it is possible to obtain a truth assignment that makes in

the literals in S true; such an assignment satisfies one literal in
every clause

Chandra Chekuri (UIUC) CS/ECE 374 43 Fall 2018 43 / 43


	NP
	Certifiers/Verifiers
	Examples

	NP
	Definition
	Intractability


	NP-Completeness
	Cook-Levin Theorem
	Completeness
	Preliminaries
	Other NP Complete Problems


	Reducing 3-SAT to Independent Set

