
Undecidability and Rice’s Theorem

Lecture 25, Dec 6
CS 374, Fall 2018
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Recap:  Universal TM U

We saw a TM U such that
Lu = L(U) = { <M> # w  | M accepts w}

Thus, U is a stored-program computer.
It reads a program <M> and executes it on data w

Lu is r.e.



Recap:  Universal TM U

Lu = { <M> # w  | M accepts w} is r.e.

We proved the following:
Theorem: Lu is undecidable (i.e, not recursive)

No “algorithm” for Lu
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Polytime Reductions

X ≤p Y   “X reduces to Y in polytime”

Ix REDUCTION
(poly time)

Y-solver
(poly time)

IY
YES

NO

X-solver (polytime)

If X can’t be decided in poly time, then Y can’t be decided in poly time
If Y  can be decided in poly time, then X can be decided in poly time



X ≤ Y   “X reduces to Y in polytime”

Ix REDUCTION
(poly time)

Y-solver
(poly time)

IY
YES

NO

X-solver (polytime)

Polytime Reductions

If X can’t be decided in poly time, then Y can’t be decided in poly time
If Y  can be decided in poly time, then X can be decided in poly time



X ≤ Y   “X reduces to Y”

Ix REDUCTION Y-solver
IY

YES

NO

X-solver 

Reduction

If X can’t be decided, then Y can’t be decided
If Y  can be decided, then X can be decided.



X ≤ Y   “X reduces to Y”

Reduction

X-Solver(IX) {
• Run reduction algorithm to 

create instance IY from IX
• Return output of Y-Solver(IY)
}



Using Reductions

• Once we have some seed problems such as Ld
and Lu we can use reductions to prove that 
more problems are undecidable



Halting Problem

• Does given M halt when run on blank input?
• Lhalt = {<M> | M halts when run on blank input}
• Show Lhalt is undecidable by showing Lu ≤ Lhalt

REDUCTION Lhalt
decider

YES

NO

Lu-decider

What are input and output of the reduction?



A different version of HALT

Lhalt = { <M>#w | M halts on w }

Easier to show that this version of Lhalt is 
undecidable by showing Lu ≤ Lhalt

Why?



Lu ≤ Lhalt

REDUCTION Lhalt
decider

YES

NO

Lu-decider

<M> # w <M’>

Need:   M’ halts on blank input iff M(w) accepts

TM M’
const M
const w

run M(w) and halt if it accepts

The REDUCTION doesn’t run M on w. It produces code for M’  !



Example
• Suppose we have the code for a program isprime() and we want 

to check if it accepts the number 13
• The reduction creates new program to give to decider for Lhalt: 

note that the reduction only creates the code, does not run any 
program itself.

main() {  
If (isprime(13)) then

QUIT
else 

LOOP FOREVER
}

boolean isprime(int i) {
…

}



Lu ≤ Lhalt

REDUCTION Lhalt
decider

YES

NO

Lu-decider

<M> # w <M’>

Need:   M’ halts on blank input iff M(w) accepts

TM M’
const M
const w

run M(w) and halt if it accepts

Correctness:   Lu-decider say “yes” iff M’ halts on blank input
iff M(w) accepts
iff <M>#w is in Lu



More reductions about languages

• We’ll show other languages involving program 
behavior are undecidable:

• L374 = {<M> | L(M) = {0374} }

• L≠Ø =   {<M> | L(M) is nonempty} 

• Lpal =  {<M> | L(M) = palindromes} 

• many many others



L374 = {<M> | L(M) = {0374} } is undecidable

• Given a TM M, telling whether it accepts only 
the string 0374 is not possible

• Proved by showing   Lu ≤ L374

<M> # w REDUCTION: BUILD M’
M’:  constants:  M, w

On input x, 
0. if x ≠ 0374, reject
1. if x = 0374, then

run M(w) 
accept x iff M(w) 
ever accepts w

xWhat is L(M’) ?
• If M(w) accepts, L(M’) = 
• If M(w) doesn’t  L(M’) = 

{0374}
Ø

Q:    How does the reduction know whether or not M(w) accepts ?
A: It doesn’t have to.  It just builds (code for) M’.

<M’> =
instance of Lu instance of L374



L374 = {<M> | L(M) = {0374} } is undecidable

• Given a TM M, telling whether it accepts only 
the string 0374 is not possible

• Prove by showing   Lhalt ≤ L374

• Reduction: an algorithm, that given a program 
<M> creates a new program <M’> such that 
L(M’) = {0374} iff M halts on blank input

• Why does this suffice?



L374 = {<M> | L(M) = {0374} } is undecidable

• Reduction: an algorithm, that given a program 
<M> creates a new program <M’> such that 
L(M’) = {0374} iff M halts on blank input

M’(input x) {
Run M();
If (x == 0374) accept
else reject

}
Note that reduction only creates code for M’ from 
code for M



• What about Laccepts-374 = {<M> | M accepts 0374}
• Is this easier?
– in fact, yes, since L374 isn’t even r.e., but Laccepts-374 is
– but no, Laccepts-374 is not decidable either

• The same reduction works:
– If M(w) accepts, L(M’) = {0374}, so M’ accepts 0374

– If M(w) doesn’t, L(M’) = Ø, so M’ doesn’t accept 0374

• More generally, telling whether or not a machine 
accepts any fixed string is undecidable

L374 = {<M> | L(M) = {0374} } is undecidable



L≠Ø = {<M> | L(M) is nonempty} is undecidable

• Given a TM M, telling whether it accepts       
any string is undecidable

• Proved by showing   Lhalt ≤ L≠Ø



L≠Ø = {<M> | L(M) is nonempty} is undecidable

• Reduction: an algorithm, that given a program 
<M> creates a new program <M’> such that 
L(M’) = {0374} iff M halts on blank input

M’(input x) {
Run M();
accept x;

}



Lpal = {<M> | L(M) = palindromes} is undecidable

• Given a TM M, telling whether it accepts       
the set of palindromes is undecidable

• Proved by showing   LHALT ≤ Lpal



Lpal = {<M> | L(M) = palindromes} is undecidable

• Reduction: an algorithm, that given a program 
<M> creates a new program <M’> such that 
L(M’) = {0374} iff M halts on blank input

M’(input x) {
Run M();
If (x is a palindrome) 

accept;
else 

reject;
}



Lots of undecidable problems about 
languages accepted by programs

• Given M, is L(M) = {palindromes}?
• Given M, is L(M) ≠ Ø?
• Given M, is L(M) = {0374} ?
• Given M, does L(M) contain 0374?
• Given M, is L(M) = {0p |p is prime}?
• Given M, does L(M) contain any prime?
• Given M, does L(M) contain any word?
• Given M, does L(M) meet these formal specs?
• Given M, does L(M) = Σ* ?UNDECIDABLE



Rice’s Theorem

• Q: What can we decide about the languages 
accepted by programs?

A:  NOTHING !
except “trivial” things



Properties of r.e. languages
• A Property of r.e. languages is a predicate P of r.e. 

languages.
i.e., P: {L | L is r.e.} à {true, false}

Important: we are only interested in r.e languages

• Examples:
• P(L) = “L contains 0374”
• P(L) = “L contains at least 5 strings”
• P(L) = “L is empty”
• P(L) = “L = {0n1n| n ≥ 0}”



Properties of r.e. languages
• A Property of r.e. languages is a predicate P of r.e. 

languages.
i.e., P: {L | L is r.e.} à {true, false}

L = L(M) for some TM iff L is r.e by definition.

• We will thus think of a Property of r.e. languages as 
a set  { <M> | L(M) satisfies predicate P}

• Note that each property P is thus a set of strings 
L(P) = { <M> | L(M) satisfies predicate P}

• Question: For which P is L(P) decidable?



Trivial Properties

• A property is trivial if either all r.e. languages 
satisfy it, or no r.e. languages satisfy it.

• { <M> | L(M) is r.e}.... why is this “trivial” ?
– EVERY language accepted by an M is r.e. by def’n

• { <M> | L(M) is not r.e}.... why is this “trivial” ?
• { <M>| L(M) = Ø or L(M) ≠Ø}....  why “trivial”?
• Clearly, trivial properties are decidable
• Because if P is trivial then L(P) = Ø or L(P) = Σ* 



Rice’s Theorem

Every nontrivial property of    
r.e. languages is undecidable

So, there is virtually nothing we can decide about behavior 
(language accepted) by programs 

Example: auto-graders don’t exist (if submissions are allowed to 
run an arbitrary (but finite) amount of time).



Proof

• Let P be a non-trivial property
• Let L(P) = { <M> | L(M) satisfies predicate P}
• Show L(P) is undecidable
• Assume Ø does not satisfy P
• Assume L(M1) satisfies P for some TM M1

There must be at least one such TM  (why?)



Proof

• Reduction: an algorithm, that given a program 
<M> creates a new program <M’> such that 
L(M’) = L(M1) iff M halts on blank input

M’(input x) {
Run M();
Run M1(x);

}

If M halts on blank input L(M’) = L(M1) 
else L(M’) = Ø



MP

Decider for HALT

<M> <M’> YES:  
L(M’) satisfies P
iff M halts

NO: 
L(M’) = Ø doesn’t satisfy P
iff M does not halt

If there is a decider MP to tell if a TM accepts a language satisfying P...

REDUCTION: BUILD <M’>

Since HALT is not decidable, MP doesn’t exist, and L(P) is undecidable

M’:  constant:  <M>

On input x, 
x Run M

Accept x if

?? blah blah blah ??M halts and M1
accepts x 

If M doesn’t halt then L(M’) =
If M does halt  then L(M’) =

Ø
L(M1)



What about assumption
• We assumed Ø does not satisfy P
• What if Ø does satisfy P?
• Then consider 

L(P’) = { <M> | L(M) doesn’t satisfy predicate P}
• Then Ø isn’t in L(P’)
• Show L(P’) is undecidable
• So L(P) isn’t either (by closure under 

complement)



Properties of r.e Languages are Not 
properties of programs/TMs

• P is defined on languages, not the machines 
which might accept them.

• {<M> | M at some point moves its head left}
is a property of the machine behavior, not the 

language accepted.
• {<A.py> | program A has 374 lines of code}
• {<A.py> | A accepts “Hello World”}

this really is a predicate on L(A)



Properties about TMs

• sometimes decidable:
– { <M>| M has 374 states} 

– { <M>| M uses ≤  374 tape cells on blank input}
• 374 x |Γ|32 x |QM|

– { <M>| M never moves head to left} 

• sometimes undecidable
– { <M>| M halts on blank input} 

– { <M>| M on input “0110”, eventually writes “2”} 



Today

• Quick recap – halting & undecidability
• Undecidability via reductions
• Rice’s theorem
• ICES



Final Thoughts

Theory of Computation and Algorithms are 
fundamental to Computer Science

Of immense pragmatic importance 
Of great interest to mathematics
Of great interest to natural sciences (physics, 
biology, chemistry)
Of great interest to social sciences too! 



Other TheoryAlgorithms Courses
• 473 (Theory 2) – every semester but not in  Spring 19

• CS 574 Randomized algorithms (Fall’19?)

• CS 583 Approximation algorithms 

• CS 579 Computational Complexity (Spring’18)

• CS498 Algorithms for BIG Data (Spring’19)

• Special topics: Algorithmic Game Theory, Data 

structures (Fall’19?), Computational Geometry, 

Algorithms for Big Data, Geometric Data Structures, 

Pseudorandomness, Combinatorial Optimization, …



Other “Theory ish” Courses

• Machine learning, statistical learning, 
reinforcement learning, graphical models, …

• Logic and formal methods
• Graph theory, combinatorics, …
• Coding theory, information theory, signal 

processing
• Computational biology



Final Thoughts

Grades are important but only in short term
Don’t be discouraged if you didn’t do well
Remember what you enjoyed learning and why
Learning is a life long process – more important 
to learn how to learn 

Use your algorithmic/theory/analytical skills to 
differentiate yourself from other IT professionals



On Learning

Without seeking, truth cannot be known at all. It 
can neither be declared from pulpits , nor set 
down in articles nor in any wise be prepared and 
sold in packages ready for use. Truth must be 
ground for every man by himself out of its husk, 
with such help as he can get, but not without 
stern labour of his own.

--John Ruskin 



Thanks!


