
Turing Machine Recap



• DFA with (infinite) tape.

• One move:   read, write, move, change state.



High-level Points

• Church-Turing thesis: TMs are the most 
general computing devices. So far no counter 
example

• Every TM can be represented as a string. 
Think of TM as a program but in a very low-
level language.

• Universal Turing Machine Mu that can 
simulate a given M on a given string w 



Decision Problems

• A yes/no question over many instances

– Given grammar G, is G ambiguous?

– Given a TM M, does L(M) = {0,1}* ?

– Given DFAs M1 and M2, does L(M1) = L(M2) ?

– Given a graph G, is G connected?

– Given a graph G, nodes s and t, and number d, is 
there a path from s to t of distance d or less?



Equivalently, languages:

– {<G> | <G> encodes an unambiguous grammar}

– {<M> | L(M) = {0,1}* }

– {<M1> # <M2> | DFAs M1 and M2, accept the same 
language}

– {<G> | <G> encodes a connected graph}

– {<G>#s#t#d | <G> encodes a graph with nodes s
and t, there is a path from s to t of distance d or 
less}

Deciding membership in the language is solving the decision problem



Decidable

• A decision problem (language) is decidable if 
there is a TM that always halts that accepts the 
language.  (The language is recursive.)

• I.e., there is an algorithm that always answers 
“yes” or “no” correctly.

• Note: since all finite languages are recursive, 
(they’re regular in fact) any decision problem 
with only a finite number of instances is 
decidable, and not well-addressed by this 
theory.... 



Example 1: decidable or not?

• Is there a substring of exactly 374 consecutive 
7’s in decimal expansion of π ?

• This is decidable.  There is an algorithm which 
is correct.   It is one of these:

Alg 1
Output “yes”

Alg 2
Output “no”

We just don’t know which one it is
But, there is an algorithm which will tell us which it is!



Moral

• This is nonsense

• There were no “instances” of the problem.

• It simply asks a single yes/no question.

• Not even clear what “language” corresponds 
to it

• Remember:  decidability is for problems with 
many possible input instances



Example 2

• Give n, is there a substring of exactly n
consecutive 7’s in π ?

• Language:  {n | decimal expansion of π
contains the substring a7nb, where a and b are 
not 7s}

• Is this language decidable?  Is there a halting 
TM for it?

• Is it r.e.?   (recall:  a TM that may not halt but 
accepts if it should)



Example 3

• Give n, is there a substring of at least n
consecutive 7’s in π ?

• Language:  L = {n | decimal expansion of π
contains the substring 7n}

• Is this language decidable?  Is there a halting 
TM for it?

• In fact, it is regular!

(L is either all of N, or equals {0,1,2,...,k} for some 
fixed k.)



Universal TM

• A single TM Mu that can compute anything 
computable!

• Takes as input

– the description of some other TM M

– data w for M to run on

• Outputs

– the results of running M(w)



Recap:  Typical TM code:

• Begins, ends with 111

• Transitions separated by 11

• Fields within transition separated by 1

• Individual fields represented by 0s

• Note: this can be viewed as a natural number

11101010000100100110100100000101011.....11.......11.......111 



Recap:  Universal TM Mu

We saw a TM  Mu such that

L(Mu) = { <M> # w | M accepts w} 

Thus, Mu is a stored-program computer.

It reads a program <M> and executes it on data w

Lu = L(Mu) = { <M> # w | M accepts w} is r.e.



High-level Points

• Church-Turing thesis: TMs are the most 
general computing devices. So far no counter 
example

• Every TM can be represented as a string. 
Think of TM as a program but in a very low-
level language.

• Universal Turing Machine Mu that can 
simulate a given M on a given string w 



Undecidability
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Undecidable Languages:
Counting Argument

• Are there undecidable languages?

• Most languages are undecidable!

• Simple proof: 

– # of TMs/algorithms is countably infinite since 
each TM can be represented as a natural number

(it’s description is a unique binary number)

– # of languages is uncountably infinite



Is Lu decidable?

• Counting argument does not directly tell us 
about undecidablity of specific interesting 
languages

• Recall Lu = { <M>#w | M accepts w } is r.e.

• Is Lu decidable?



Halting Problem

• Does given M halt when run on blank input?

• Lhalt = {<M> | M halts when run on blank
input}

• Is Lhalt decidable?



Who cares about halting TMs?



Who cares about halting TMs?

• Remember, TMs = programs

• Debugging is an important problem in CS

• Furthermore, virtually all math conjectures can 
be expressed as a halting-TM question.

Example:   Goldbach’s conjecture:  

Every even number > 2 is the sum of two 
primes.



Program Goldbach
is-sum-of-two-primes(n): boolean

FOR p ≤ q < n

IF p,q, prime AND p+q=n THEN RETURN TRUE

RETURN FALSE

goldbach() halts iff Goldbach’s conjecture is false

goldbach()

n = 4

WHILE is-sum-of-two-primes(n)

n = n+2

HALT



CS 125 assignment:

• Write a program that outputs “Hello world”.

main()

{   printf(“Hello world”);

}

• Can you write an auto-grader?

• If so; you can solve Goldbach’s conjecture...



goldbach()

n = 4

WHILE is-sum-of-two-primes(n)

n = n+2

HALT

is-sum-of-two-primes(n): boolean
FOR p ≤ q < n

IF p,q, prime AND p+q=n
THEN RETURN TRUE

RETURN FALSE

main()

{  
printf(“Hello world”);
}

AUTOGRADER

CORRECT

INCORRECT
goldbach();

So, deciding if a program 
prints “Hello world” is solving 
goldbach’s conjecture



Deciding halting problem

main()

{  
printf(“Hello world”);
}

AUTOGRADER

CORRECT

INCORRECT
M()

• Given program <M>, to determine if M halts, 
do the following:

Using same ideas, we can 
show that deciding 
anything about code 
behavior is not possible

So, deciding if a program 
prints “Hello world” is 
solving the halting problem



Lu is not recursive

Two proofs

• Slick proof 
• Slow proof via diagonalization and reduction



Lu is not decidable
Warm-up:  Self-reference leads to paradox

• In a town there is a barber who shaves all and 
only those who do not shave themselves

Who shaves the barber?

• Homogenous words: self-describing
– English, short, polysyllabic

Heterogenous words:  non-self-describing
– Spanish, long, monosyllabic

What kind of word is “heterogenous” ?



Lu is not decidable

• Proof by contradiction

• Suppose there was an algorithm (TM) 
that always halted, as follows:

TM accept-checker

Check if M(w) accepts

yes, M(w) accepts

no, M(w) doesn’t accept*

<M> # w

* remember – M(w) may not halt – which is why this may be difficult

We’ll show how to use this as a subroutine to get a contradiction



Lu is not decidable
• Proof by contradiction

• Suppose there was an algorithm (TM) as 
follows:

TM accept-checker

Decides if M(w) 
accepts

accepts

doesn’t

<M> # <M>
copy-arg

<M>

M(<M>
)

accept

reject

TM    Q

Q(<M>) accepts iff M(<M>) doesn’t accept
Q(<M>) rejects iff M(<M>) accepts    

<M> # w



M(<M>
)

TM accept-checker

Decides if  
accepts

Lu is not decidable

accept

doesn’t

<M> # <M>
copy-arg

<M>
accept

reject

TM    Q

Q(<M>) accepts iff M(<M>) doesn’t accept
Q(<M>) rejects iff M(<M>) accepts    

Does Q(<Q>) accept or reject?
either way, a contradiction, so assumption that accept-checker existed was wrong 



Lu is not decidable: Slow proof

• Use diagonalization to prove that a specific 
language Ld is not r.e

• Show that if Lu is decidable then Ld is 
decidable which leads to contradiction



Diagonalization

• Fix alphabet to be {0,1}

• Recall that {0,1}* is countable: we can 
enumerate strings as w0, w1, w2,...

• Recall that we established a correspondence 
between TMs and binary numbers hence TMs 
can be enumerated as M0, M1, M2, …

• A language L is a subset of {0,1}* 



List of all r.e. languages
w0 w1 w2 w3 w4 w5 w6 w7 w8 w9 ...

M0 no no no no no no no no no no ...

M1 yes no no yes no yes yes yes yes no ...

M2 no yes yes no no yes no yes no no ...

M3 no yes no yes no yes no yes no yes ...

M4 yes yes yes yes no no no no no no ...

M5 no no no no no no no no no no ...

M6 yes yes yes yes yes yes yes yes yes yes ...

M7 yes yes no no yes yes yes no no yes ...

M8 no yes no no yes no yes yes yes no ...

M9 no no no yes yes no yes no yes yes ...

... ... ... ... ... ... ... ... ... ... ... ...



List of all r.e. languages
w0 w1 w2 w3 w4 w5 w6 w7 w8 w9 ...

M0 no no no no no no no no no no ...

M1 yes no no yes no yes yes yes yes no ...

M2 no yes yes no no yes no yes no no ...

M3 no yes no yes no yes no yes no yes ...

M4 yes yes yes yes no no no no no no ...

M5 no no no no no no no no no no ...

M6 yes yes yes yes yes yes yes yes yes yes ...

M7 yes yes no no yes yes yes no no yes ...

M8 no yes no no yes no yes yes yes no ...

M9 no no no yes yes no yes no yes yes ...

... ... ... ... ... ... ... ... ... ... ... ...

Consider for each i, whether or not Mi accepts wi



List of all r.e. languages
w0 w1 w2 w3 w4 w5 w6 w7 w8 w9 ...

M0 yes no no no no no no no no no ...

M1 yes yes no yes no yes yes yes yes no ...

M2 no yes no no no yes no yes no no ...

M3 no yes no no no yes no yes no yes ...

M4 yes yes yes yes yes no no no no no ...

M5 no no no no no yes no no no no ...

M6 yes yes yes yes yes yes no yes yes yes ...

M7 yes yes no no yes yes yes yes no yes ...

M8 no yes no no yes no yes yes no no ...

M9 no no no yes yes no yes no yes no ...

... ... ... ... ... ... ... ... ... ... ... ...

Flip “yes” and “no”, defining Ld = {wi | wi not in L(Mi)}



Ld = {wi | wi not in L(Mi)}

Ld is not r.e.    (Why not?)

– if it were, it would be accepted by some TM Mk

– but Ld contains wk iff L(Mk) does not contain wk

– so Ld ≠ L(Mk) for any k

– so Ld is not r.e.



X ≤ Y   “X reduces to Y”

Ix REDUCTION Y-solver
IY

YES

NO

X-solver 

Reduction

If X can’t be decided, then Y can’t be decided

If Y  can be decided, then X can be decided.



Ld ≤ Lu

REDUCTION
Lu

decider

YES 
M(w) doesn’t accept

NO
M(w) does accept

Ld-decider

<M,w>



Ld ≤ Lu

REDUCTION
Lu

decider

YES 
Mi(wi) doesn’t accept

NO
Mi(wi) does accept

Ld-decider

wi <Mi , wi>

• The above is a reduction from Ld to complement of Lu

• Note that a language L is decidable iff L is decidable
• Hence Lu is decidable iff Lu decidable



Lu is not decidable

• Ld is not r.e. by diagonalization

• Suppose Lu is decidable 

• Then Lu is also decidable 

• We have shown Ld ≤ Lu which implies Ld is 
decidable, a contradiction

• Therefore Lu is not decidable (undecidable)

• No algorithm for Lu 



Using Reductions

• Once we have some seed problems such as Ld

and Lu we can use reductions to prove that 
more problems are undecidable



Halting Problem

• Does given M halt when run on blank input?

• Lhalt = {<M> | M halts when run on blank input}

• Show Lhalt is undecidable by showing Lu ≤ Lhalt

REDUCTION
Lhalt

decider

YES

NO

Lu-decider

What are input and output of the reduction?



Lu ≤ Lhalt

REDUCTION
Lhalt

decider

YES

NO

Lu-decider

<M> # w <M’>

Need:   M’ halts on blank input iff M(w) accepts

TM M’
const M
const w

run M(w) and halt if it accepts

The REDUCTION doesn’t run M on w. It produces code for M’  !



Example

• Suppose we have the code for a program isprime() and we want 
to check if it accepts the number 13

• The reduction creates new program to give to decider for Lhalt: 
note that the reduction only creates the code, does not run any 
program itself.

main() {  
If (isprime(13)) then

HALT
else 

LOOP FOREVER
}

boolean isprime(int i) {
…

}



Lu ≤ Lhalt

REDUCTION
Lhalt

decider

YES

NO

Lu-decider

<M> # w <M’>

Need:   M’ halts on blank input iff M(w) accepts

TM M’
const M
const w

run M(w) and halt if it accepts

Correctness:   Lu-decider say “yes” iff M’ halts on blank input
iff M(w) accepts
iff <M>#w is in Lu



More reductions about languages

• We’ll show other languages involving program 
behavior are undecidable:

• L374 = {<M> | L(M) = {0374} }

• L≠Ø =   {<M> | L(M) is nonempty} 

• Lpal =  {<M> | L(M) = palindromes} 

• many many others



L374 = {<M> | L(M) = {0374} } is undecidable

• Given a TM M, telling whether it accepts only 
the string 0374 is not possible

• Proved by showing   Lu ≤ L374

<M> # w
REDUCTION: BUILD M’

M’:  constants:  M, w

On input x, 
0. if x ≠ 0374, reject
1. if x = 0374, then

run M(w) 
accept x iff M(w) 
ever accepts w

xWhat is L(M’) ?
• If M(w) accepts, L(M’) = 
• If M(w) doesn’t  L(M’) = 

{0374}
Ø

Q:    How does the reduction know whether or not M(w) accepts ?
A: It doesn’t have to.  It just builds (code for) M’.

<M’> =

instance of Lu
instance of L374



M374

Decider for Lu

<M>#w <M’> YES:  
L(M’) =  {0374} 
iff M accepts w

NO: 
L(M’) = Ø ≠ {0374} 
iff M doesn’t accept w

If there is a decider M374 to tell if a TM accepts the language {0374}...

REDUCTION: BUILD M’

M’:  constants:  M, w

On input x, 
0.  if x ≠ 0374, reject
1. if x = 0374, then
2. run M(w) 

accept x iff M(w) 
ever accepts w

x

Since Lu is not decidable, M374 doesn’t exist, and L374 is undecidable

Recall L(M’) = {0374} 
iff M(w) accepts 



• What about Laccepts-374 = {<M> | M accepts 0374}

• Is this easier?

– in fact, yes, since L374 isn’t even r.e., but Laccepts-374 is

– but no, Laccepts-374 is not decidable either

• The same reduction works:

– If M(w) accepts, L(M’) = {0374}, so M’ accepts 0374

– If M(w) doesn’t, L(M’) = Ø, so M’ doesn’t accept 0374

• More generally, telling whether or not a machine 
accepts any fixed string is undecidable

L374 = {<M> | L(M) = {0374} } is undecidable



L≠Ø = {<M> | L(M) is nonempty} is undecidable

• Given a TM M, telling whether it accepts       
any string is undecidable

• Proved by showing   Lu ≤ L≠Ø

<M> # w
REDUCTION: BUILD M’

M’:  constants:  M, w

On input x, 

xWe want M’ to satisfy:
• If M(w) accepts, L(M’)  
• If M(w) doesn’t  L(M’)

≠ Ø
= Ø

<M’> =

instance of Lu
instance of L≠Ø

Run M(w)
Accept x if M(w) 

accepts

If M(w) accepts, L(M’) = Σ* hence ≠ Ø
If M(w) doesn’t,  L(M’) = ØWhat is L(M’)?



M≠Ø

Decider for Lu

<M>#w <M’> YES:  
L(M’) ≠ Ø
iff M accepts w

NO: 
L(M’) = Ø
iff M doesn’t accept w

If there is a decider M≠Ø to tell if a TM accepts a nonempty language...

REDUCTION: BUILD M’

Since Lu is not decidable, M≠Ø doesn’t exist, and L≠Ø is undecidable

M’:  constants:  M, w

On input x, 

x Run M(w)
Accept x if M(w) 

accepts



Lpal = {<M> | L(M) = palindromes} is undecidable

• Given a TM M, telling whether it accepts       
the set of palindromes is undecidable

• Proved by showing   Lu ≤ Lpal

<M> # w
REDUCTION: BUILD M’

M’:  constants:  M, w

On input x, 

xWe want M’ to satisfy:
• If M(w) accepts, L(M’)  
• If M(w) doesn’t  L(M’)

= {palindromes} 
≠ {palindromes}

<M’> =

instance of Lu
instance of Lpal

Run M(w)
Accept x if

M(w) accepts and 
x is a palindrome



Mpal

Decider for Lu

<M>#w <M’> YES:  
L(M’) = {palindromes}
iff M accepts w

NO: 
L(M’) = Ø ≠ {palindromes}
iff M doesn’t accept w

If there is a decider Mpal to tell if a TM accepts the set of palindromes

REDUCTION: BUILD M’

Since Lu is not decidable, Mpal doesn’t exist, and Lpal is undecidable

M’:  constants:  M, w

On input x, 

x Run M(w)
Accept x if

M(w) accepts and 
x is a palindrome



Lots of undecidable problems about 
languages accepted by programs

• Given M, is L(M) = {palindromes}?

• Given M, is L(M) ≠ Ø?

• Given M, is L(M) = {0374} ?

• Given M, does L(M) contain 0374?

• Given M, is L(M) = {0p |p is prime}?

• Given M, does L(M) contain any prime?

• Given M, does L(M) contain any word?

• Given M, does L(M) meet these formal specs?

• Given M, does L(M) = Σ* ?
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SUMMARY


