:

Turing Machine Recap

N\

 DFA with (infinite) tape.
* One move: read, write, move, change state.

_

/

/ High-level Points \

* Church-Turing thesis: TMs are the most

general computing devices. So far no counter
example

 Every TM can be represented as a string.
Think of TM as a program but in a very low-
level language.

* Universal Turing Machine M, that can
simulate a given M on a given string w

_ /

:

_

Decision Problems \

* Ayes/no question over many instances
— Given grammar G, is G ambiguous?
— Given a TM M, does L(M) ={0,1} ?
— Given DFAs M, and M,, does L(M,) = L(M,) ?
— Given a graph G, is G connected?
— Given a graph G, nodes s and t, and number d, is

there a path from s to t of distance d or less?

/

/ Equivalently, languages: \

— {<G> | <G> encodes an unambiguous grammar}

—{<M> | L(M) ={0,1}"}

— {<M > #<M,> | DFAs M, and M., accept the same
language}

— {<G> | <G> encodes a connected graph}

— {<G>#s#tt#td | <G> encodes a graph with nodes s
and t, there is a path from s to t of distance d or
less}

D(iding membership in the language is solving the decision probly

/ Decidable \

e A decision problem (language) is decidable if
there is a TM that always halts that accepts the
language. (The language is recursive.)

* |.e., there is an algorithm that always answers
“yes” or “no” correctly.

* Note: since all finite languages are recursive,
(they’re regular in fact) any decision problem
with only a finite number of instances is
decidable, and not well-addressed by this

\theory.... /

/ Example 1: decidable or not? \

Alg 1
Output “yes”

Alg 2
Output “no”

\\Ne just don’t know which one it is

But, there is an algorithm which will tell us which it is!

* |s there a substring of exactly 374 consecutive
7’s in decimal expansion of it ?

* This is decidable. There is an algorithm which
is correct. It is one of these:

/

4 ora N

* This is nonsense

* There were no “instances” of the problem.

* |t simply asks a single yes/no question.

* Not even clear what “language” corresponds
to it

* Remember: decidability is for problems with
many possible input instances

_ /

/ Example 2 \

\accepts if it should) /

Give n, is there a substring of exactly n
consecutive 7'sin T ?

Language: {n | decimal expansion of 1t
contains the substring a7"b, where a and b are
not 7s}

Is this language decidable? Is there a halting
TM for it?

Isitr.e.? (recall: a TM that may not halt but

/ Example 3 \

* Give n, is there a substring of at least n
consecutive 7’'sinm ?

* Language: L={n | decimal expansion of it
contains the substring 7"}

* |s this language decidable? Is there a halting
TM for it?

* |n fact, it is regular!

(L is either all of N, or equals {0,1,2,...,k} for some
\ fixed k.) /

/ Universal TM \

* Asingle TM M that can compute anything
computable!

* Takes as input

— the description of some other TM M
— data w for M to run on

* Qutputs

— the results of running M(w)

_ /

/ Recap: Typical TM code: \

11101010000100100110100100000101011.....11....... 11....... 111

* Begins, ends with 111

* Transitions separated by 11

* Fields within transition separated by 1

* |Individual fields represented by Os

* Note: this can be viewed as a natural number

_ J

/ Recap: Universal TM M, \

We saw a TM M, suc
L(M,) ={<M>#w

_

N that

M accepts w}

Thus, M, is a stored-program computer.

L,=L(M,)={<M>#w | M accepts wi}is r.e.

It reads a program <M> and executes it on data w

/

/ High-level Points \

* Church-Turing thesis: TMs are the most

general computing devices. So far no counter
example

 Every TM can be represented as a string.
Think of TM as a program but in a very low-
level language.

* Universal Turing Machine M, that can
simulate a given M on a given string w

_ /

Undecidability

. this
lecture

not even
accepted by
aTM

/ Undecidable Languages: \

Counting Argument

* Are there undecidable languages?
* Most languages are undecidable!
* Simple proof:
— # of TMs/algorithms is countably infinite since
each TM can be represented as a natural number
(it’s description is a unique binary number)

— # of languages is uncountably infinite

_ J

/ Is L, decidable? \

* Counting argument does not directly tell us
about undecidablity of specific interesting
anguages

* Recall L,={<M>#w | M accepts w }is r.e.
* Is L, decidable?

_ J

/ Halting Problem \

* Does given M halt when run on blank input?

* L,..={<M> | M halts when run on blank
input}

* Is L, , decidable?

_ J

Who cares about halting TMs?

S

/ Who cares about halting TMs ?\

e Remember, TMs = programs
* Debugging is an important problem in CS

* Furthermore, virtually all math conjectures can
be expressed as a halting-TM question.

Example: Goldbach’s conjecture:

Every even number > 2 is the sum of two

\primes. /

/ Program Goldbach \

m-of-two-primes(n): boolean
FORP<Qg<n
IF p,d, prime AND p+q=n THEN RETURN TRUE
RETURN FALSE

goldbach()
n=4
WHILE is-sum-of-two-primes(n)
n=n+2

HALT

\goldbach() halts iff Goldbach’s conjecture is false/

/ CS 125 assignment: \

* Write a program that outputs “Hello world”.

main()
{ printf(“Hello world”);

}
e Can you write an auto-grader?

* |f so; you can solve Goldbach’s conjecture...

_ J

goldbach() is-sum-of-two-primes(n): boolean
n=4 FORp<Qg<n
IF p,q, prime AND p+g=n
THEN RETURN TRUE

WHILE is-sum-of-two-primes(n)

n=n+2 RETURN FALSE
HALT
i CORRECT
main()
—> | AUTOGRADER

Lgoldpachl): INCORRECT

printf(“Hello world”);

} So, deciding if a program

prints “Hello world” is solving

goldbach’s conjecture

Deciding halting problem \

e Given program <M>, to determine if M halts,

do the following:
So, deciding if a program
prints “Hello world” is
solving the halting problem

' CORRECT
main()
MO —> | AUTOGRADER
{ A) - _ INCORRECT
printf(“Hello world”); Using same ideas, we can
J show that deciding

anything about code
behavior is not possible

/ L, Is not recursive \

Two proofs

 Slick proof
* Slow proof via diagonalization and reduction

_ J

/ L, is not decidable \

Warm-up: Self-reference leads to paradox
* |In atown there is a barber who shaves all and
only those who do not shave themselves
Who shaves the barber?

* Homogenous words: self-describing
— English, short, polysyllabic
Heterogenous words: non-self-describing
— Spanish, long, monosyllabic

\\Nhat kind of word is “heterogenous” ? /

L, is not decidable

Proof by contradiction

e Suppose there was an algorithm (TM)
that always halted, as follows:

TM accept-checker yes, M(w) accepts

<M>#w e
—

Check if M(w) accepts | o, M(w) doesn’t accept®

* remember — M(w) may not halt — which is why this may be difficult

We'll show how to use this as a subroutine to get a contradiction

L, is not decidable \

* Proof by contradiction

e Suppose there was an algorithm (TM) as

follows:
™ Q

TM accept-checker accepts A accept

<M> Co _ar <M>#W>
—> | copy-arg | Decides if M(<M> N

accepts) doesn’t reject

Q(<M>) accepts iff M(<M>) doesn’t accept
Q(<M>) rejects iff M(<M>) accepts

L, is not decidable

™ Q

<M>

copy-arg

<M># <M>
>

TM accept-checker

Decides if M(<M>
accepts

accept

doesn’t

Q(<M>) accepts iff M(<M>) doesn’t accept
Q(<M>) rejects iff M(<M>) accepts

Does Q(<Q>) accept or reject?

either way, a contradiction, so assumption that accept-checker existed was wrong

accept

reject

/ L, is not decidable: Slow proof\

e Use diagonalization to prove that a specific
language L, is not r.e

* Show that if L, is decidable then L is
decidable which leads to contradiction

_ J

/ Diagonalization \

* Fix alphabet to be {0,1}

e Recall that {0,1}* is countable: we can
enumerate strings as wg, Wy, W,, ...

e Recall that we established a correspondence
between TMs and binary numbers hence TMs
can be enumerated as M,, M,, M,, ...

* Alanguage Lis a subset of {0,1}*

_ /

List of all r.e. languages

w, | w, | w, | ws | W

W, | W,

m no | no | no | no [no| no| no| no | no | no
m yves | no | no | yes | no | yes | yes | yes | yes | no
m no | yes | yes| no | no | yes| no | yes| no | no
m no | yes| no | yes| no | yes | no | yes | no | yes
yes | yes | yes | yes | no | no | no | no | no | no
m no | no | no | no|no|noj|noj| no| no | no
m yes | yes | yes | yes | yes | yes | yes | yes | yes | yes
yes | yes | no | no | yes | yes | yes | no | no | yes
m no | yes| no | no |yes| no | yes | yes | yes | no
m no | no | no | yes|vyes| no | yes | no | yes | yes
B

List of all r.e. languages
wy | wy | wy |y | ws | wg | wy | wg | W, |

m no | no| no | no|no| no| no| no | no | no
m ves | no | no | yes | no | yes | yes | yes | yes | no
m no | yes |yes| no | no | yes| no | yes| no | no
m no | yes| no | yes| no | yes | no | yes | no | yes
yes | yes | yes | yes | no | no | no | no | no | no
m no | no | no|no|no|noj| noj| no| no | no
m yes | yes | yes | yes | yes | yes | yes | yes | yes | yes
yes | yes | no | no | yes | yes | yes | no | no | yes
m no | yes| no | no |vyes| no | yes | yes | yes | no
m no | no | no | yes|vyes| no | yes | no | yes | yes
B

Consider for each i, whether or not M. accepts w,

List of all r.e. languages
w, | ws | wg | w, | w | w, |

no no no no no no

yes | no | yes | yes | yes | yes | no

no | yes | no | yes | no | no

no | yes | no | yes | no | yes

no | no | no |vyes|vyes| no | yes | no | yes

Flip “yes” and “no”, defining L, = {w; | w; not in L(M,)}

/ L,={w; [w;,not in L(M)} \

L, isnotre. (Why not?)
— if it were, it would be accepted by some TM M,
— but L, contains w, iff L(M,) does not contain w,
—so L, # L(M,) for any k
—so L is notr.e.

_ J

/ Reduction

X-solver

REDUCTION

X<Y “XreducestoY”

Y-solver

If Y can be decided, then X can be decided.

\If X can’t be decided, then Y can’t be decided

YES

NO

L,SL,

L ,-decider

YES

M(w) doesn’t accept
REDUCTION

NO

M(w) does accept

R

L ,-decider

YES

. M(w;,) doesn’t accept
’ REDUCTION

NO

M(w;,) does accept

* The above is a reduction from L, to complement of L,
* Note that a language L is decidable iff L is decidable
* Hence L, is decidable iff L, decidable

_ J

/ L, is not decidable \

* L,is not r.e. by diagonalization
* Suppose L is decidable
e Then L, is also decidable

* We have shown L < L which implies L is
decidable, a contradiction

* Therefore L is not decidable (undecidable)
* No algorithm for L

_ J

/ Using Reductions \

* Once we have some seed problems such as L
and L, we can use reductions to prove that
more problems are undecidable

_ J

/ Halting Problem \

* Does given M halt when run on blank input?
* L, = {<M> | M halts when run on blank input}

* Show L, . is undecidable by showing L <L, .

L -decider
YES
REDUCTION Lha/t_
decider NO

\ What are input and output of the reduction? /

Lu < Lha/t

L -decider

YES

<M>#w

REDUCTION

NO

Need: M’ halts on blank input iff M(w) accepts

™ M’

const M
const w

run M(w) and halt if it accepts

The REDUCTION doesn’t run M on w. It produces code for M” |

Example

e Suppose we have the code for a program isprime() and we want
to check if it accepts the number 13

* The reduction creates new program to give to decider for L, ;.
note that the reduction only creates the code, does not run any
program itself.

main() {
If (isprime(13)) then
HALT
else
LOOP FOREVER

}

boolean isprime(int i) {

}...

Lu < Lha/t

L -decider

YES

<M>H#w

REDUCTION

NO

Need: M’ halts on blank input iff M(w) accepts

™ M’

const M
const w

run M(w) and halt if it accepts

Correctness: L, -decider say “yes” iff M’ halts on blank input
iff M(w) accepts
iff <M>#wiisin L,

ﬂ/lore reductions about /anguagg

pehavior are undecidable:

* L3y = {<M> | L(M) = {037} }

* Ly= {<M> | L(M) is nonempty}
* Ly = {<M> | L(M) = palindromes}

* many many others

_

 We’ll show other languages involving program

/

L,,, = {<M> | L(M) = {0374} } is undecidable

* Given a TM M, telling whether it accepts only

the string 0374 is not possible
Proved by showing L, <L,

<M>#w <M’> =
REDUCTION: BUILD W’

. —> - >
instance of L, instance ofl,,,

What is L(M’) ?
* If M(w) accepts, L(M’) = {0374}
* If M(w) doesn’t L(M') = ¢

_x

M’: constants: M, w

On input x,
0. if x # 0374, reject
1. if x = 0374, then
run M(w)
accept x iff M(w)
ever accepts w

Q: How does the reduction know whether or not M(w) accepts ?
A: It doesn’t have to. It just builds (code for) M’.

If there is a decider M, to tell if a TM accepts the language {0374}...

Decider for L,

<M>H#w

> | REDUCTION: BUILD M’

<M’>

A

[

M’: constants: M, w

On input X, Recall L(M’) = {0374}
0. if x # 0374, reject | iff M(w) accepts

1. if x = 0374, then
2. run M(w)
accept x iff M(w)
ever accepts w

M374

YES:
L(M) = {037}
iff M accepts w

NO:
L(M’) = @ = {0374}
iff M doesn’t accept w

Since L, is not decidable, M;,, doesn’t exist, and L., is undecidable

/374 {<M> | L(M) ={0374} }is undecidab

e What about L
e |s this easier?

accepts-374 - {<M> | M accepts 0374}

—in fact, yes, since L;,,isn't even r.e., but L, 374 iS
— but no, L, eps.374 IS NOt decidable either
* The same reduction works:
— If M(w) accepts, L(M’) = {0374}, so M’ accepts 0374
— If M(w) doesn’t, L(M’) = @, so M’ doesn’t accept 0374

 More generally, telling whether or not a machine
vccepts any fixed string is undecidable /

L.s = {<M> | L(M) is nonempty} is undecidabh

 Given a TM M, telling whether it accepts
any string is undecidable

* Proved by showing L, <L.4

<M>#w
- -
instance of L,

We want M’ to satisfy: —>
e |f M(w) accepts, LIM’) =@
 If M(w)doesn’t L(M") =0

If M(w) accepts, L(M’) =% hence # @ /

What is L(M’)?

<M’> =

REDUCTION: BUILD M’ - o
instance of L4

X

M’: constants: M, w

On input x,
Run M(w)
Accept x if M(w)
accepts

If M(w) doesn’t, L(M’) =@

If there is a decider M, to tell if a TM accepts a nonempty language...

Decider for L,
<M>#w ;1 <M> YES:
> | REDUCTION: BUILD M* | ————> M, —> LM = &
(A \ iff M accepts w
M’: constants: M, w \
On input x,
X Run M(w) NO:
—_—y N
Accept x if M(w) LM) =0
accepts iff M doesn’t accept w

Since L, is not decidable, M_4 doesn’t exist, and L,4is undecidable

Lyo = {<M> | L(M) = palindromes} is undecidable

 Given a TM M, telling whether it accepts
the set of palindromes is undecidable

* Proved by showing L, <1

<M>#w
- ->
instance of L,

REDUCTION: BUILD M’

pal

<M’> =

We want M’ to satisfy:
* If M(w) accepts, L(M’) = {palindromes}
e If M(w) doesn’t L(M’) # {palindromes}

instance Ol?Lpa,

_x

M’: constants: M, w

On input x,
Run M(w)
Accept x if

M(w) accepts and
X is a palindrome

<M>Hw

If there is a decider M, to tell if a TM accepts the set of palindromes

Since L, is not decidable, M

> | REDUCTION: BUILD M’

Decider for L,

<M’>

A
[

M’: constants: M, w

On input x,

X 4 Run M(w)
Accept x if

M(w) accepts and

X is a palindrome

pal

YES:
L(M’) = {palindromes}
iff M accepts w

—>

\

NO:
L(M’) = @ # {palindromes}
iff M doesn’t accept w

pal

doesn’t exist, and L, is undecidable

/Lots of undecidable problems aboum

languages accepted by programs

* Given M, is L(M) = {palindromes}?
e Given M, is L(M) # @?

* Given M, is L(M) = {0374
* Given M, does L

* Give any prime?

DABLE

SUIVIIVIARN

not even
accepted by
aTM

