Turing Machine Recap

- DFA with (infinite) tape.
- One move: read, write, move, change state.

High-level Points

- Church-Turing thesis: TMs are the most general computing devices. So far no counter example
- Every TM can be represented as a string.
 Think of TM as a program but in a very low-level language.
- Universal Turing Machine M_u that can simulate a given M on a given string w

Decision Problems

- A yes/no question over many instances
 - Given grammar G, is G ambiguous?
 - Given a TM M, does $L(M) = \{0,1\}^*$?
 - Given DFAs M_1 and M_2 , does $L(M_1) = L(M_2)$?
 - Given a graph G, is G connected?
 - Given a graph G, nodes s and t, and number d, is there a path from s to t of distance d or less?

Equivalently, languages:

- {<G> | <G> encodes an unambiguous grammar}
- $\{ < M > | L(M) = \{0,1\}^* \}$
- $-\{\langle M_1\rangle \# \langle M_2\rangle \mid \text{DFAs } M_1 \text{ and } M_2, \text{ accept the same language}\}$
- {<G> | <G> encodes a connected graph}
- {<G>#s#t#d | <G> encodes a graph with nodes s and t, there is a path from s to t of distance d or less}

Deciding membership in the language is solving the decision problem

Decidable

- A decision problem (language) is decidable if there is a TM that always halts that accepts the language. (The language is recursive.)
- I.e., there is an algorithm that always answers "yes" or "no" correctly.
- Note: since all finite languages are recursive, (they're regular in fact) any decision problem with only a finite number of instances is decidable, and not well-addressed by this theory....

Example 1: decidable or not?

- Is there a substring of exactly 374 consecutive 7's in decimal expansion of π ?
- This is decidable. There is an algorithm which is correct. It is one of these:

Alg 1
Output "yes"

Alg 2 Output "no"

We just don't know which one it is But, there is an algorithm which will tell us which it is!

Moral

- This is nonsense
- There were no "instances" of the problem.
- It simply asks a single yes/no question.
- Not even clear what "language" corresponds to it
- Remember: decidability is for problems with many possible input instances

Example 2

- Give n, is there a substring of exactly n consecutive 7's in π ?
- Language: $\{n \mid \text{decimal expansion of } \pi \text{ contains the substring } a7^n b$, where a and b are not 7s
- Is this language decidable? Is there a halting TM for it?
- Is it r.e.? (recall: a TM that may not halt but accepts if it should)

Example 3

- Give n, is there a substring of at least n consecutive 7's in π ?
- Language: $L = \{n \mid \text{decimal expansion of } \pi \}$
- Is this language decidable? Is there a halting TM for it?
- In fact, it is regular!
 (L is either all of N, or equals {0,1,2,...,k} for some fixed k.)

Universal TM

- A *single* TM M_u that can compute anything computable!
- Takes as input
 - the *description* of some *other* TM *M*
 - data w for M to run on
- Outputs
 - the results of running M(w)

Recap: Typical TM code:

- Begins, ends with 111
- Transitions separated by 11
- Fields within transition separated by 1
- Individual fields represented by 0s
- Note: this can be viewed as a natural number

Recap: Universal TM M_u

We saw a TM M_u such that

$$L(M_u) = \{ \# w \mid M \text{ accepts } w \}$$

Thus, M_u is a stored-program computer.

It reads a program < M > and executes it on data w

$$L_{ij} = L(M_{ij}) = \{ \langle M \rangle \# w \mid M \text{ accepts } w \} \text{ is r.e.}$$

High-level Points

- Church-Turing thesis: TMs are the most general computing devices. So far no counter example
- Every TM can be represented as a string.
 Think of TM as a program but in a very low-level language.
- Universal Turing Machine M_u that can simulate a given M on a given string w

Undecidable Languages: Counting Argument

- Are there undecidable languages?
- Most languages are undecidable!
- Simple proof:
 - # of TMs/algorithms is countably infinite since each TM can be represented as a natural number (it's description is a unique binary number)
 - # of languages is uncountably infinite

Is L_u decidable?

- Counting argument does not directly tell us about undecidablity of specific interesting languages
- Recall $L_{ij} = \{ \langle M \rangle \# w \mid M \text{ accepts } w \} \text{ is r.e.}$
- Is L, decidable?

Halting Problem

- Does given M halt when run on blank input?
- $L_{halt} = \{ \langle M \rangle \mid M \text{ halts when run on blank input} \}$
- Is L_{halt} decidable?

Who cares about halting TMs?

Who cares about halting TMs?

- Remember, TMs = programs
- Debugging is an important problem in CS
- Furthermore, virtually all math conjectures can be expressed as a halting-TM question.

Example: Goldbach's conjecture:

Every even number > 2 is the sum of two primes.

Program Goldbach

```
is-sum-of-two-primes(n): boolean
  FOR p \le q < n
         IF p,q, prime AND p+q=n THEN RETURN TRUE
  RETURN FALSE
goldbach()
  n = 4
  WHILE is-sum-of-two-primes(n)
      n = n+2
  HALT
```

goldbach() halts iff Goldbach's conjecture is false

CS 125 assignment:

Write a program that outputs "Hello world".

```
main()
{ printf("Hello world");
}
```

- Can you write an auto-grader?
- If so; you can solve Goldbach's conjecture...

```
is-sum-of-two-primes(n): boolean FOR p \le q < n IF p,q, prime AND p+q=n THEN RETURN TRUE RETURN FALSE
```


AUTOGRADER INCORRECT

So, deciding if a program prints "Hello world" is solving goldbach's conjecture

Deciding halting problem

 Given program <M>, to determine if M halts, do the following:

So, deciding if a program prints "Hello world" is solving the halting problem

L,, is not recursive

Two proofs

- Slick proof
- Slow proof via diagonalization and reduction

L_u is not decidable

Warm-up: Self-reference leads to paradox

 In a town there is a barber who shaves all and only those who do not shave themselves

Who shaves the barber?

- Homogenous words: self-describing
 - English, short, polysyllabic

Heterogenous words: non-self-describing

- Spanish, long, monosyllabic

What kind of word is "heterogenous"?

L_{II} is not decidable

- Proof by contradiction
- Suppose there was an algorithm (TM) that always halted, as follows:

* remember – M(w) may not halt – which is why this may be difficult

We'll show how to use this as a subroutine to get a contradiction

L,, is not decidable

- Proof by contradiction
- Suppose there was an algorithm (TM) as follows:

TM Q

Q(< M>) accepts iff M(< M>) doesn't accept Q(< M>) rejects iff M(< M>) accepts

L_u is not decidable

TM Q

 $Q(\langle M \rangle)$ accepts iff $M(\langle M \rangle)$ doesn't accept $Q(\langle M \rangle)$ rejects iff $M(\langle M \rangle)$ accepts

Does Q(<Q>) accept or reject?

either way, a contradiction, so assumption that accept-checker existed was wrong

L_u is not decidable: Slow proof

- Use diagonalization to prove that a specific language L_d is not r.e
- Show that if L_u is decidable then L_d is decidable which leads to contradiction

Diagonalization

- Fix alphabet to be {0,1}
- Recall that $\{0,1\}^*$ is countable: we can enumerate strings as w_0 , w_1 , w_2 ,...
- Recall that we established a correspondence between TMs and binary numbers hence TMs can be enumerated as M₀, M₁, M₂, ...
- A language L is a subset of {0,1}*

List of all r.e. languages

	w _o	W ₁	W ₂	W ₃	W ₄	W ₅	W ₆	W ₇	W ₈	W ₉	•••
M_{o}	no	no	no	no	no	no	no	no	no	no	•••
M ₁	yes	no	no	yes	no	yes	yes	yes	yes	no	•••
M ₂	no	yes	yes	no	no	yes	no	yes	no	no	•••
M ₃	no	yes	no	yes	no	yes	no	yes	no	yes	
M_4	yes	yes	yes	yes	no	no	no	no	no	no	•••
M ₅	no	no	no	no	no	no	no	no	no	no	•••
M_6	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes	•••
M ₇	yes	yes	no	no	yes	yes	yes	no	no	yes	•••
M ₈	no	yes	no	no	yes	no	yes	yes	yes	no	
M_{g}	no	no	no	yes	yes	no	yes	no	yes	yes	•••
•••	•••	•••	•••	•••	•••	•••	•••	•••	•••	•••	•••

List of all r.e. languages

	w _o	W ₁	W ₂	W ₃	W ₄	W ₅	W ₆	w ₇	W ₈	W ₉	•••
M_{o}	no	no	no	no	no	no	no	no	no	no	•••
M ₁	yes	no	no	yes	no	yes	yes	yes	yes	no	•••
M ₂	no	yes	yes	no	no	yes	no	yes	no	no	•••
M ₃	no	yes	no	yes	no	yes	no	yes	no	yes	•••
M ₄	yes	yes	yes	yes	no	no	no	no	no	no	•••
M_5	no	no	no	no	no	no	no	no	no	no	•••
M_6	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes	•••
M ₇	yes	yes	no	no	yes	yes	yes	no	no	yes	•••
M ₈	no	yes	no	no	yes	no	yes	yes	yes	no	•••
M_{g}	no	no	no	yes	yes	no	yes	no	yes	yes	•••
•••	•••	•••	•••	•••	•••	•••	•••	•••	•••	•••	•••

Consider for each i, whether or not M_i accepts w_i

List of all r.e. languages

	w _o	W ₁	W ₂	W ₃	W ₄	W ₅	W ₆	W ₇	W ₈	W ₉	•••
M_{o}	yes	no	no	no	no	no	no	no	no	no	•••
M ₁	yes	yes	no	yes	no	yes	yes	yes	yes	no	•••
M ₂	no	yes	no	no	no	yes	no	yes	no	no	•••
M ₃	no	yes	no	no	no	yes	no	yes	no	yes	•••
M ₄	yes	yes	yes	yes	yes	no	no	no	no	no	•••
M_5	no	no	no	no	no	yes	no	no	no	no	•••
M_6	yes	yes	yes	yes	yes	yes	no	yes	yes	yes	•••
M ₇	yes	yes	no	no	yes	yes	yes	yes	no	yes	•••
M ₈	no	yes	no	no	yes	no	yes	yes	no	no	•••
M_{g}	no	no	no	yes	yes	no	yes	no	yes	no	•••
•••	•••	•••	•••	•••	•••	•••	•••	•••	•••	•••	•••

Flip "yes" and "no", defining $L_d = \{w_i \mid w_i \text{ not in } L(M_i)\}$

$$L_d = \{w_i \mid w_i \text{ not in } L(M_i)\}$$

L_d is not r.e. (Why not?)

- if it were, it would be accepted by some TM M_k
- but L_d contains w_k iff $L(M_k)$ does not contain w_k
- so $L_d \neq L(M_k)$ for any k
- so L_d is not r.e.

Reduction

 $X \le Y$ "X reduces to Y"

If Y can be decided, then X can be decided.

If X can't be decided, then Y can't be decided

*L*_d-decider

- The above is a reduction from L_d to complement of L_u
- Note that a language L is decidable iff L is decidable
- Hence L_u is decidable iff \overline{L}_u decidable

L,, is not decidable

- L_d is not r.e. by diagonalization
- Suppose L_{II} is decidable
- Then L is also decidable
- We have shown $L_d \le \overline{L_u}$ which implies L_d is decidable, a contradiction
- Therefore L_I is **not** decidable (undecidable)
- No algorithm for L_u

Using Reductions

Once we have some seed problems such as L_d and L_u we can use reductions to prove that more problems are undecidable

Halting Problem

- Does given M halt when run on blank input?
- $L_{halt} = \{ \langle M \rangle \mid M \text{ halts when run on blank input} \}$
- Show L_{halt} is undecidable by showing $L_u \leq L_{halt}$

What are input and output of the reduction?

Need: M' halts on blank input iff M(w) accepts

TM M'

const M

const w

run M(w) and halt if it accepts

The REDUCTION doesn't run M on w. It produces code for M'!

Example

- Suppose we have the code for a program isprime() and we want to check if it accepts the number 13
- The reduction creates new program to give to decider for L_{halt}: note that the reduction only creates the code, does not run any program itself.

*L*_u-decider

Need: M' halts on blank input iff M(w) accepts

TM M'

const M

const w

run M(w) and halt if it accepts

Correctness: L_u -decider say "yes" iff M' halts on blank input iff M(w) accepts iff < M > # w is in L_u

More reductions about languages

- We'll show other languages involving program behavior are undecidable:
- $L_{374} = \{ <M > | L(M) = \{0^{374}\} \}$
- $L_{\neq \emptyset} = \{ \langle M \rangle \mid L(M) \text{ is nonempty} \}$
- L_{pal} = {<M> | L(M) = palindromes}
- many many others

$$L_{374} = \{ \langle M \rangle \mid L(M) = \{0^{374}\} \}$$
 is undecidable

- Given a TM M, telling whether it accepts only the string 0^{374} is not possible
- Proved by showing $L_u \le L_{374}$

Q: How does the reduction know whether or not M(w) accepts?

A: It doesn't have to. It just builds (code for) M'.

If there is a decider M_{374} to tell if a TM accepts the language $\{0^{374}\}...$ Decider for L_{ij} <M>#w <M'> YES: M₃₇₄ REDUCTION: BUILD M' $L(M') = \{0^{374}\}$ iff M accepts w M': constants: M, w Recall $L(M') = \{0^{374}\}$ On input x, NO: 0. if $x \neq 0^{374}$, reject iff M(w) accepts Χ $L(M') = \emptyset \neq \{0^{374}\}$ 1. if $x = 0^{374}$, then iff M doesn't accept w 2. run M(w)accept x iff M(w)ever accepts w Since L_{ij} is not decidable, M_{374} doesn't exist, and L_{374} is undecidable

$$L_{374} = \{ \langle M \rangle \mid L(M) = \{0^{374}\} \}$$
 is undecidable

- What about $L_{accepts-374} = \{ \langle M \rangle \mid M \text{ accepts } 0^{374} \}$
- Is this easier?
 - in fact, yes, since L_{374} isn't even r.e., but $L_{accepts-374}$ is
 - but no, $L_{accepts-374}$ is not decidable either
- The same reduction works:
 - If M(w) accepts, $L(M') = \{0^{374}\}$, so M' accepts 0^{374}
 - If M(w) doesn't, $L(M') = \emptyset$, so M' doesn't accept 0^{374}
- More generally, telling whether or not a machine accepts any fixed string is undecidable

$L_{\neq \emptyset} = \{ \langle M \rangle \mid L(M) \text{ is nonempty} \}$ is undecidable

- Given a TM M, telling whether it accepts any string is undecidable
- Proved by showing $L_u \leq L_{\neq \emptyset}$

What is L(M')? If M(w) accepts, $L(M') = \Sigma^*$ hence $\neq \emptyset$ If M(w) doesn't, $L(M') = \emptyset$

If there is a decider $M_{\neq \emptyset}$ to tell if a TM accepts a nonempty language... Decider for L_{ij} < M > # w<M'> YES: M_{≠Ø} REDUCTION: BUILD M' $L(M') \neq \emptyset$ iff M accepts w M': constants: M, w On input x, NO: Run M(w)Χ $L(M') = \emptyset$ Accept x if M(w)iff M doesn't accept w accepts Since L_{ij} is not decidable, $M_{\neq\emptyset}$ doesn't exist, and $L_{\neq\emptyset}$ is undecidable

$L_{pal} = \{ \langle M \rangle \mid L(M) = \text{palindromes} \}$ is undecidable

- Given a TM M, telling whether it accepts the set of palindromes is undecidable
- Proved by showing $L_u \leq L_{pal}$

```
< M > # W
instance of L_u

REDUCTION: BUILD M'
instance of L_{pal}
```

We want M' to satisfy:

- If M(w) accepts, $L(M') = \{palindromes\}$
- If M(w) doesn't L(M') ≠ {palindromes}

```
M': constants: M, w
On input x,
Run M(w)
Accept x if
M(w) accepts and
x is a palindrome
```


Lots of undecidable problems about languages accepted by programs

Given M, is L(M) = {palindromes}? • Given M, is $L(M) \neq \emptyset$? • Given M, is $L(M) = \{0^{374}\}$ Given M, does L(M) • Given M, is 1 Given any prime? contain any word? sL(M) meet these formal specs? I, does $L(M) = \Sigma^*$?

