CS/ECE 374: Algorithms & Models of Computation, Fall 2018

CYK Algorithm

Lecture 15 October 16, 2018

Parsing

We saw regular languages and context free languages.

Most programming languages are specified via context-free grammars. Why?

- CFLs are sufficiently expressive to support what is needed.
- At the same time one can "efficiently" solve the parsing problem: given a string/program \boldsymbol{w} , is it a valid program according to the CFG specification of the programming language?

CFG specification for C

```
<relational-expression> ::= <shift-expression>
                            <relational-expression> < <shift-expression>
                            <relational-expression> > <shift-expression>
                            <relational-expression> <= <shift-expression>
                            <relational-expression> >= <shift-expression>
<shift-expression> ::= <additive-expression>
                       <shift-expression> << <additive-expression>
                       <shift-expression> >> <additive-expression>
<additive-expression> ::= <multiplicative-expression>
                          <additive-expression> + <multiplicative-expression>
                          <additive-expression> - <multiplicative-expression>
<multiplicative-expression> ::= <cast-expression>
                                <multiplicative-expression> * <cast-expression>
                                <multiplicative-expression> / <cast-expression>
                                <multiplicative-expression> % <cast-expression>
<cast-expression> ::= <unary-expression>
                      ( <type-name> ) <cast-expression>
<unary-expression> ::= <postfix-expression>
                       ++ <unary-expression>
                       -- <unary-expression>
                       <unary-operator> <cast-expression>
                       sizeof <unary-expression>
                       sizeof <type-name>
```

Algorithmic Problem

Given a CFG G = (V, T, P, S) and a string $w \in T^*$, is $w \in L(G)$?

- That is, does **S** derive **w**?
- Equivalently, is there a parse tree for w?

Algorithmic Problem

Given a CFG G = (V, T, P, S) and a string $w \in T^*$, is $w \in L(G)$?

- That is, does **S** derive **w**?
- Equivalently, is there a parse tree for w?

Simplifying assumption: G is in Chomsky Normal Form (CNF)

- L does not contain ϵ . Productions are all of the form $A \to BC$ or $A \to a$ where $a \in T$. Thus no non-terminal can derive ϵ .
- ullet Every CFG $oldsymbol{G}$ can be converted into CNF form via an efficient algorithm
- Advantage: parse tree is a binary tree.

Example

$$S \rightarrow AB \mid XB$$

 $Y \rightarrow AB \mid XB$
 $X \rightarrow AY$
 $A \rightarrow 0$
 $B \rightarrow 1$

Question:

- Is **000111** in *L(G)*?
- Is **00011** in *L(G)*?

Towards Recursive Algorithm

Assume G is a CNF grammar.

 \boldsymbol{S} derives \boldsymbol{w} iff one of the following holds:

- |w| = 1 and $S \rightarrow w$ is a rule in P
- |w| > 1 and there is a rule $S \to AB$ and a split w = uv with $|u|, |v| \ge 1$ such that A derives u and B derives v

Towards Recursive Algorithm

Assume G is a CNF grammar.

 \boldsymbol{S} derives \boldsymbol{w} iff one of the following holds:

- |w| = 1 and $S \rightarrow w$ is a rule in P
- |w| > 1 and there is a rule $S \to AB$ and a split w = uv with $|u|, |v| \ge 1$ such that A derives u and B derives v

Observation: Subproblems generated require us to know if some non-terminal \boldsymbol{A} will derive a substring of \boldsymbol{w} .

Recursive solution

 $w = w_1 w_2 \dots w_n$ Assume r non-terminals in V

Deriv(A, i, j): 1 if non-terminal A derives substring $w_i w_{i+1} \dots w_j$, otherwise 0

Recursive formula: Deriv(A, i, j) is 1 iff

- j = i and $A \rightarrow w_i$ is a rule or
- j > i and there is rule $A \to BC$ and there is $i \le h < j$ such that $\mathsf{Deriv}(B,i,h) = 1$ and $\mathsf{Deriv}(C,h+1,j) = 1$

Output: $w \in L(G)$ iff Deriv(S, 1, n) = 1.

Analysis

Assume
$$V = \{A_1, A_2, \dots, A_r\}$$
 with $S = A_1$

- Number of subproblems: $O(rn^2)$
- Space: $O(rn^2)$
- Time to evalue a subproblem from previous ones: O(|P|n) where P is set of rules
- Total time: $O(|P|rn^3)$ which is polynomial in both |w| and |G|. For fixed G the run time is cubic in input string length.
- Not practical for most programming languages. Most languages assume restricted forms of CFGs that enable more efficient parsing algorithms.

8

Example

$$S \rightarrow AB \mid XB$$

 $Y \rightarrow AB \mid XB$
 $X \rightarrow AY$
 $A \rightarrow 0$
 $B \rightarrow 1$

Question:

- Is **000111** in *L(G)*?
- Is **00011** in *L(G)*?

Order of evaluation for iterative algorithm: increasing order of substring length.

Example

$$S
ightarrow AB \mid XB$$

 $Y
ightarrow AB \mid XB$
 $X
ightarrow AY$
 $A
ightarrow 0$
 $B
ightarrow 1$