**Final** 

| Name:  | ( Dl pp.pyg               |  |
|--------|---------------------------|--|
| NetID: | $\Leftarrow$ Please PRINT |  |

| Which exam room to go to based on your discussion section.                         |                                                                            |                                                                   |                                                    |  |  |  |
|------------------------------------------------------------------------------------|----------------------------------------------------------------------------|-------------------------------------------------------------------|----------------------------------------------------|--|--|--|
| Lincoln Theater                                                                    |                                                                            | DCL 1320                                                          | MSEB 100                                           |  |  |  |
| AYA 9am Yipu<br>AYB 10am Xilin<br>AYC 11am Xilin<br>AYD noon Mitch<br>AYE 1pm Ravi | AYJ 1pm Shant<br>AYF 2pm Konstantinos<br>AYG 3pm Robert<br>BYE 3pm Jiaming | AYH 4pm Robert<br>AYK 2pm Shant<br>BYA 9am Zhongyi<br>BYC 1pm Shu | BYB 10am Zhongyi<br>BYF 4pm Jiaming<br>BYD 2pm Shu |  |  |  |

## • Don't panic!

- Please print your name, print your NetID, and circle your discussion section in the boxes above.
- There are seven questions you should answer all of them.
- If you brought anything except your writing implements, your double-sided **handwritten** (in the original)  $8\frac{1}{2}$ " × 11" cheat sheet, and your university ID, please put it away for the duration of the exam. In particular, please turn off and put away *all* medically unnecessary electronic devices.
  - Submit your cheat sheet together with your exam. We will not return or scan the cheat sheets, so photocopy them before the exam if you want a copy.
  - If you are NOT using a cheat sheet, please indicate so in large friendly letters on this page.
- Please read all the questions before starting to answer them. Please ask for clarification if any question is unclear.
- This exam lasts 175 minutes. The clock started when you got the exam.
- If you run out of space for an answer, feel free to use the blank pages at the back of this booklet, but please tell us where to look.
- As usual, answering any (sub)problem with "I don't know" (and nothing else) is worth 25% partial credit. Correct, complete, but **slightly** sub-optimal solutions are *always* worth more than 25%. Solutions that are exponentially (or dramatically) slower than the expected solution would get no points at all. A blank answer is not the same as "I don't know".
- Total IDK points for the whole exam would not exceed 10.
- Give complete solutions, not examples. Declare all your variables. If you don't know the answer admit it and use IDK. Write short concise answers.
- Style counts. Please use the backs of the pages or the blank pages at the end for scratch work, so that your actual answers are clear.
- Please return *all* paper with your answer booklet: your question sheet, your cheat sheet, and all scratch paper.
- Good luck!

NETID:

NAME:

1 (10 pts.) Short questions and hopefully short answers.

No justification is required for your answers.

**1.A.** (5 PTS.) Give an asymptotically tight bound for the following recurrence.

$$T(n) = \sum_{i=1}^{10} T(n_i) + O(n)$$
 for  $n > 200$ , and  $T(n) = 1$  for  $1 \le n \le 200$ ,

where  $n_1 + n_2 + \cdots + n_{10} = n$ , and  $n/20 \le n_i \le (9/10)n$  for all i.

**1.B.** (5 PTS.) Describe (in detail) a DFA for the language below. Label the states and/or briefly explain their meaning.

 $\{w \in \{0,1\}^* \mid w \text{ has at least three 1's and has odd length}\}.$ 

- 2 (15 PTS.) I have a question about NFAs.
  - **2.A.** (5 PTS.) Recall that an NFA N is specified as  $(Q, \delta, \Sigma, s, F)$  where Q is a finite set of states,  $\Sigma$  is a finite alphabet,  $s \in Q$  is the start state,  $F \subseteq Q$  is the set of accepting states, and  $\delta: Q \times (\Sigma \cup \{\epsilon\}) \to 2^Q$  is the transition function. Recall that  $\delta^*$  extends  $\delta$  to strings:  $\delta^*(q, w)$  is the set of states reachable in N from state q on input string w.

In the NFA shown in the figure below what is  $\delta^*(S,0)$ ?



**2.B.** (10 PTS.) Given an arbitrary NFA  $N=(Q,\Sigma,\delta,s,F)$  and an arbitrary state  $q\in Q$  and an arbitrary string  $w\in \Sigma^*$  of length t, describe an efficient algorithm, as fast as possible, that computes  $\delta^*(q,w)$ . Express the running time of your algorithm in terms of n,m,t, where  $n=|Q|, m=\sum_{p\in Q}\sum_{b\in\Sigma\cup\{\epsilon\}}|\delta(p,b)|$ , and t=|w|. Note that faster solutions can earn more points. You can assume that  $|\Sigma|=O(1)$ .

You do not need to prove the correctness of your algorithm (no credit for incorrect algorithm). (Hint: Construct the appropriate graph, and do the appropriate things to it.)

3 (15 pts.) MST when there are few weights.

Let G = (V, E) be a connected undirected graph with n vertices and m edges, and with positive edge weights. Here, the edge weights are taken from a small set of k possible weights

NETID: NAME:

 $\{w_1, w_2, \ldots, w_k\}$  (for simplicity, assume that  $w_1 < w_2 < \ldots < w_k$ ). Describe a **linear time** algorithm to compute the MST of G for the case that k is a constant. (For partial credit, you can solve the case k = 2.)

Provide a short explanation of why your algorithm is correct (no need for a formal proof).

**4** (15 PTS.) SHUFFLE IT.

Let  $w \in \Sigma^*$  be a string. A sequence of strings  $u_1, u_2, \ldots, u_h$ , where each  $u_i \in \Sigma^*$ , is a valid *split* of  $w \iff w = u_1 u_2 \ldots u_h$  (i.e., w is the concatenation of  $u_1, u_2, \ldots, u_h$ ). Given a valid split  $u_1, u_2, \ldots, u_h$  of w, its **price** is  $p(w) = \sum_{i=1}^h |u_i|^2$ . For example, for the string INTRODUCTION, the split INT · RODUC · TION has price  $3^2 + 5^2 + 4^2 = 50$ .

Given two languages  $T_1, T_2 \subseteq \Sigma^*$  a string w is a **shuffle** iff there is a valid split  $u_1, u_2, \ldots, u_h$  of w such that  $u_{2i-1} \in T_1$  and  $u_{2i} \in T_2$ , for all i (for simplicity, assume that  $\varepsilon \notin T_1$  and  $\varepsilon \notin T_2$ ). You are given a subroutine isInT(x,i) which outputs whether the input string x is in  $T_i$  or not, for  $i \in \{1,2\}$ . To evaluate the running time of your solution you can assume that each call to isInT takes constant time.

Describe an efficient algorithm, as fast as possible, that given a string  $w = w_1 w_2 \dots w_n$ , of length n, and access to  $T_1$  and  $T_2$  via isInT, outputs the minimum  $\ell_2$  price of a shuffle if one exists. Your algorithm should output  $\infty$  if there is no valid shuffle.

You will get partial credit for a correct, but slow (but still efficient), algorithm. An exponential time or incorrect algorithm would get no points at all.

What is the running time of your algorithm?

**5** (15 PTS.) Dumb and dumbbell.

For k > 1, a (k, k)-dumbbell is a graph formed by two disjoint complete graphs (cliques), each one on k vertices, plus an edge connecting the two (i.e., its a graph with 2k vertices). See figure for a (7,7)-dumbbell. The DUMB problem is the following: given an undirected graph  $\mathsf{G} = (V,E)$  and an integer k, does  $\mathsf{G}$  contain a (k,k)-dumbbell as a subgraph? Prove that DUMB is NP-COMPLETE.



6 (15 pts.) You are the decider.

**Prove** (via reduction) that the following language is undecidable.

 $L = \{\langle M \rangle \mid M \text{ is a Turing machine that accepts at least 374 strings}\}.$ 

(You can not use Rice's Theorem in solving this problem.)

7 (15 pts.) Yellow street needs bits.

There are n customers living on yellow street in Shampoo-banana. Yellow street is perfectly straight, going from south by southeast to north by northwest. The ith customers lives in distance

NETID: NAME:

 $s_i$  meters from the beginning of the street (i.e., you are given n numbers:  $0 \le s_1 < s_2 < \cdots < s_n$ ). A new internet provider Bits4You is planning to connect all of these customers together using wireless network. A base station, which can be placed anywhere along yellow street, can serve all the customers in distance r from it.

The input is  $s_1, s_2, \ldots, s_n, r$ . Describe an efficient algorithm, as fast as possible, that computes the *smallest* number of base stations that can serve all the n customers. Namely, every one of the n customers must be in distance  $\leq r$  from some base station that your algorithm decided to build. Incorrect algorithms will earn few, if any points. (Your algorithm output is just the number of base stations – there is no need to output their locations.)

Prove the correctness of your algorithm. What is the running time of your algorithm?