CS/ECE 374 A 4 Fall 2019
s Homework 6 &y

Due Tuesday, October 22, 2019 at 8pm

1. A non-empty sequence S[1..£] of positive integers is called a perfect ruler sequence if it
satisfies the following conditions:

* The length of S is one less than a power of 2; that is, £ = 2K — 1 for some integer k.
» Let m=[{/2]=2%"1. Then S[m] is the unique maximum element of S.

e If{ > 1, then the prefix S[1..m — 1] is a perfect ruler sequence.

e If £ > 1, then the suffix S[m + 1..£] is a perfect ruler sequence.

For example, the following sequence is a perfect ruler sequence:
(2,7,6,9,5,8,5,12,1,9,4,10,7,8,3)

Describe and analyze an efficient algorithm to compute the longest perfect ruler subsequence
of a given array A[1..n] of integers.

2. Suppose you are running a ferry across Lake Michigan.! The vehicle hold in your ferry
is L meters long and three lanes wide. As each vehicle drives up to your ferry, you direct
it to one of the three lanes; the vehicle then parks as far forward in that lane as possible.
Vehicles must enter the ferry in the order they arrived; if the vehicle at the front of the
queue doesn’t fit into any of the lanes, then no more vehicles are allowed to board.

Because your uncle runs the concession stand at the ferry terminal, you want to load
as few vehicles onto your ferry as possible for each trip. But you don’t want to be obvious
about it, if the vehicle at the front of the queue fits anywhere, you must assign it to a lane
where it fits. You can see the lengths of all vehicles in the queue on your security camera.

Describe and analyze an algorithm to load the ferry. The input to your algorithm is
the integer L and an array len[1..n] containing the (integer) lengths of all vehicles in the
queue. (You can assume that 1 <len[i] < L for all i.) Your output should be the smallest
integer k such that you can put vehicles 1 through k onto the ferry, in such a way that
vehicle k 4+ 1 does not fit. Express the running time of your algorithm as a function of
both n (the number of vehicles) and L (the length of the ferry).

For example, suppose L = 6, and the first six vehicles in the queue have lengths 3, 3, 4,
4, 2, and 2. Your algorithm should return the integer 3, because if you assign the first three
vehicles to three different lanes, the fourth vehicle won't fit. (A different lane assignment
gets all six vehicles on board, but that would rob your uncle of three customers.)

—)
DD R)
-) G

1Welcome aboard the Recursion Ferry! How we get across the water is none of your business!

CS/ECE 374A Homework 6 (due October 22) Fall 2019

3. CS 125 students Chef Gallon and Fade Waygone wrote some inorder traversal code for
their MP on binary search trees. To keep things simple, they wisely chose the integers 1
through n as their search keys. Unfortunately, their code contained a subtle bug (which
was nearly impossible to track down, thanks to version inconsistencies between Fade’s
laptop, the submission/grading server, and Oracle’s ridiculous licencing terms) that would
sporadically swap left and right child pointers in some binary tree nodes. As a result, their
traversal code rarely returned the search keys in sorted order.

For example, given the binary search tree below, if the four marked nodes had their
left and right pointers swapped, Chef and Fade’s traversal code would return the garbled
“inorder” sequence 7,6,3,4,5,2,1,8,13,9,12,11,10, 14,15, 16.

Chef and Fade submitted the output of several garbled traversals, but before they could
submit the actual traversal code, Fade’s laptop was infested with bees. After receiving a
grade of 0 on their MP, Chef and Fade argued with their instructor that they should get
some partial credit, because the sequences their code produced were at least consistent
with correct binary search trees, and anyway the bees weren’t their fault.

Design and analyze an efficient algorithm to verify or refute Chef and Fade’s claim
(about the binary search trees, not the bees). The input to your algorithm is an array
A[1..n] containing a permutation of the integers 1 through n. Your algorithm should
output TRUE if this array is the inorder traversal of an actual binary search tree with keys 1
through n, possibly with some left and right child pointers swapped, and FALSE otherwise.
For example, if the input array contains [5, 2, 3,4, 1], your algorithm should return TRUE,
and if the input array contains [2,5,3,1,4], your algorithm should return FALSE.

CS/ECE 374A Homework 6 (due October 22) Fall 2019

Solved Problems

4. A string w of parentheses (and) and brackets [and] is balanced if and only if w is
generated by the following context-free grammar:

S—e|(S)|LST|SS
For example, the string w = ([()ILI())L() ()1() is balanced, because w = xy, where

x=([OIITO) ad y=LOOITO.

Describe and analyze an algorithm to compute the length of a longest balanced subsequence
of a given string of parentheses and brackets. Your input is an array A[1..n], where
Alil€{(,),L,]1} for every index i.

Solution: Suppose A[1..n] is the input string. For all indices i and k, let LBS(i, k)
denote the length of the longest balanced subsequence of the substring Ali..k]. We
need to compute LBS(1,n). This function obeys the following recurrence:

0 ifi>k

24+LBS(i+1,k—1)

max (LBS(i, /) + LBS(j +1,k)) L]
e

LBS(i, j) = { max

k—
kmaix (LBS(i,j) +LBS(j+1, k)) otherwise
J:

Here A[i] ~ A[k]indicates that A[i] and A[k] are matching delimiters: Either A[i] = (
and A[k]=) orAli]=[and A[k] = 1.

We can memoize this function into a two-dimensional array LBS[1..n,1..n]. Since
every entry LBS[i, j] depends only on entries in later rows or earlier columns (or both),
we can evaluate this array row-by-row from bottom up in the outer loop, scanning
each row from left to right in the inner loop. The resulting algorithm runs in O(n?)
time.

LONGESTBALANCEDSUBSEQUENCE(A[1..n]):
fori < ndownto 1
LBS[i,i] < O
fork—i+1ton
if A[i] ~ A[k]
LBS[i, k]« LBS[i + 1,k—1]+2
else
LBS[i,k]< 0
forje—itok—1
LBS[i, k] « max {LBS[i, k], LBS[i,j]+LBS[j + 1,k]}
return LBS[1, n]

Rubric: 10 points, standard dynamic programming rubric

CS/ECE 374A Homework 6 (due October 22) Fall 2019

5. Oh, no! You've just been appointed as the new organizer of Giggle, Inc.’s annual mandatory
holiday party! The employees at Giggle are organized into a strict hierarchy, that is, a tree
with the company president at the root. The all-knowing oracles in Human Resources have
assigned a real number to each employee measuring how “fun” the employee is. In order
to keep things social, there is one restriction on the guest list: An employee cannot attend
the party if their immediate supervisor is also present. On the other hand, the president
of the company must attend the party, even though she has a negative fun rating; it’s her
company, after all.

Describe an algorithm that makes a guest list for the party that maximizes the sum of
the “fun” ratings of the guests. The input to your algorithm is a rooted tree T describing
the company hierarchy, where each node v has a field v.fun storing the “fun” rating of the
corresponding employee.

Solution (two functions): We define two functions over the nodes of T'.

e MaxFunYes(v) is the maximum total “fun” of a legal party among the descendants
of v, where v is definitely invited.

* MaxFunNo(v) is the maximum total “fun” of a legal party among the descendants
of v, where v is definitely not invited.

We need to compute MaxFunYes(root). These two functions obey the following mutual
recurrences:

MaxFunYes(v) = v.fun + Z MaxFunNo(w)
children w of v

MaxFunNo(v) = Z max{MaxFunYes(w), MaxFunNo(w)}

children w of v

(These recurrences do not require separate base cases, because >, @ = 0.) We can
memoize these functions by adding two additional fields v.yes and v.no to each node
v in the tree. The values at each node depend only on the vales at its children, so we
can compute all 2n values using a postorder traversal of T.

CompUTEMAXFUN(V):
v.yes < v.fun
BEsSTPARTY(T): v.no < 0
CoMmPUTEMAXFUN(T.root) for all children w of v
return T.root.yes ComPUTEMAXFUN(w)
v.yes « v.yes + w.no
v.no < v.no + max{w.yes, w.no}

(Yes, this is still dynamic programming; we’re only traversing the tree recursively
because that’s the most natural way to traverse trees!?) The algorithm spends O(1)
time at each node, and therefore runs in O(n) time altogether. [|

“A naive recursive implementation would run in O(¢") time in the worst case, where ¢ = (1++/5)/2 ~
1.618 is the golden ratio. The worst-case tree is a path—every non-leaf node has exactly one child.

CS/ECE 374A Homework 6 (due October 22) Fall 2019

Solution (one function): For each node v in the input tree T, let MaxFun(v) denote
the maximum total “fun” of a legal party among the descendants of v, where v may
or may not be invited.

The president of the company must be invited, so none of the president’s “children”
in T can be invited. Thus, the value we need to compute is

root.fun + Z MaxFun(w).

grandchildren w of root
The function MaxFun obeys the following recurrence:

v.fun + Z MaxFun(x)

grandchildren x of v

Z MaxFun(w)

children w of v

MaxFun(v) = max

(This recurrence does not require a separate base case, because Z @ =0.) We can
memoize this function by adding an additional field v.maxFun to each node v in
the tree. The value at each node depends only on the values at its children and
grandchildren, so we can compute all values using a postorder traversal of T.

CoMPUTEMAXFUN(V):
BESTPARTY(T): yes < v.fun
CoMPUTEMAXFUN(T.root) no < 0
party « T.root.fun for all children w of v
for all children w of T.root ComMPUTEMAXFUN(w)
for all children x of w no « no + w.maxFun
party « party + x.maxFun for all children x of w
return party yes < yes + x.maxFun
v.maxFun < max{yes,no}

(Yes, this is still dynamic programming; we’re only traversing the tree recursively
because that’s the most natural way to traverse trees!?)

The algorithm spends O(1) time at each node (because each node has exactly one
parent and one grandparent) and therefore runs in O(n) time altogether. [|

?Like the previous solution, a direct recursive implementation would run in O(¢") time in the worst
case, where ¢ = (1+ +/5)/2 ~ 1.618 is the golden ratio.

Rubric: 10 points: standard dynamic programming rubric. These are not the only correct solu-
tions.

