Rice's Theorem. Let \mathcal{L} be any set of languages that satisfies the following conditions:

- There is a Turing machine Y such that $Accept(Y) \in \mathcal{L}$.
- There is a Turing machine N such that $Accept(N) \notin \mathcal{L}$.

The language $ACCEPTIN(\mathcal{L}) := \{ \langle M \rangle \mid ACCEPT(M) \in \mathcal{L} \}$ is undecidable.

Prove that the following languages are undecidable using Rice's Theorem:

- 1. ACCEPTREGULAR := $\{\langle M \rangle \mid ACCEPT(M) \text{ is regular}\}$
- 2. ACCEPTILLINI := { $\langle M \rangle$ | *M* accepts the string ILLINI }
- 3. ACCEPTPALINDROME := { $\langle M \rangle$ | *M* accepts at least one palindrome}
- 4. ACCEPTTHREE := { $\langle M \rangle$ | *M* accepts exactly three strings}
- 5. ACCEPTUNDECIDABLE := { $\langle M \rangle$ | ACCEPT(*M*) is undecidable }

To think about later. Which of the following are undecidable? How would you prove that?

- 1. ACCEPT{ $\{\varepsilon\}$ } := { $\langle M \rangle \mid M$ accepts only the string ε ; that is, ACCEPT $(M) = \{\varepsilon\}$ }
- 2. ACCEPT{ \emptyset } := { $\langle M \rangle \mid M$ does not accept any strings; that is, ACCEPT(M) = \emptyset }
- 3. ACCEPT $\emptyset := \{ \langle M \rangle \mid ACCEPT(M) \text{ is not an acceptable language} \}$
- 4. ACCEPT=REJECT := { $\langle M \rangle$ | ACCEPT(M) = REJECT(M) }
- 5. ACCEPT \neq REJECT := { $\langle M \rangle$ | ACCEPT(M) \neq REJECT(M) }
- 6. ACCEPT \cup REJECT := { $\langle M \rangle$ | ACCEPT $(M) \cup$ REJECT $(M) = \Sigma^*$ }