Models of Computation Lecture 4: Nondeterministic Automata [Sp’18]

The art of art, the glory of expression

and the sunshine of the light of letters is simplicity.

Nothing is better than simplicity

nothing can make up for excess or for the lack of definiteness.

— Walt Whitman, Preface to Leaves of Grass (1855)

Freedom of choice

Is what you got.
Freedom from choice
Is what you want.

— Devo, “Freedom of Choice”, Freedom of Choice (1980)

4 Nondeterminism

4.1 Nondeterministic State Machines

The following diagram shows something that looks like a finite-state machine over the alphabet
{0, 1}, but on closer inspection, it is not consistent with our earlier definitions. On one hand,
there are two transitions out of s for each input symbol. On the other hand, states a and b are
each missing an outgoing transition.

A nondeterministic finite-state automaton

Nevertheless, there is a sense in which this machine “accepts” the set of all strings that contain
either 00 or 11 as a substring. Imagine that when the machine reads a symbol in state s, it
makes a choice about which transition to follow. If the input string contains the substring 00,
then it is possible for the machine to end in the accepting state c, by choosing to move into
state a when it reads a © immediately before another 0. Similarly, if the input string contains
the substring 11, it is possible for the machine to end in the accepting state c. On the other hand,
if the input string does not contain either 00 or 11—or in other words, if the input alternates
between 0 and 1—there are no choices that lead the machine to the accepting state. If the
machine incorrectly chooses to transition to state a and then reads a 1, or transitions to b and
then reads 0, it explodes; the only way to avoid an explosion is to stay in state s.

This object is an example of a nondeterministic finite-state automaton, or NFA, so named
because its behavior is not uniquely determined by the input string. Formally, every NFA has five
components:

* An arbitrary finite set 3, called the input alphabet.
* Another arbitrary finite set Q, whose elements are called states.

* An arbitrary transition function : Q x & — 22,

* A start state s € Q.

© Copyright 2018 Jeff Erickson.
This work is licensed under a Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/4.0/).
Free distribution is strongly encouraged; commercial distribution is expressly forbidden.
See http://jeffe.cs.illinois.edu/teaching/algorithms/ for the most recent revision.

1

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://jeffe.cs.illinois.edu/teaching/algorithms/

* Kk

Models of Computation Lecture 4: Nondeterministic Automata [Sp’18]

* A subset A C Q of accepting states.

The only difference from the formal definition of deterministic finite-state automata is the domain
of the transition function. In a DFA, the transition function always returns a single state; in an
NFA, the transition function returns a set of states, which could be empty, or all of Q, or anything
in between.

Just like DFAs, the behavior of an NFA is governed by an input string w € *, which the
machine reads one symbol at a time, from left to right. Unlike DFAs, however, an NFA does not
maintain a single current state, but rather a set of current states. Whenever the NFA reads a
symbol a, its set of current states changes from C to §(C,a) := quc 6(q,a). After all symbols
have been read, the NFA accepts w if its current state set contains at least one accepting state
and rejects w otherwise. In particular, if the set of current states ever becomes empty, it will stay
empty forever, and the NFA will reject.

More formally, we define the function §*: Q x ¥* — 2% that transitions on strings as follows:

{q} ifw=e,
6%(g,w) = U 6*(r,x) ifw=ax.
reéd(q,a)

The NFA (Q, %, 6,s,A) accepts w € ¥ if and only if 6*(s,w) NA # @.

We can equivalently define an NFA as a directed graph whose vertices are the states Q, whose
edges are labeled with symbols from 3. We no longer require that every vertex has exactly one
outgoing edge with each label; it may have several such edges or none. An NFA accepts a string w
if the graph contains at least one walk from the start state to an accepting state whose label is w.

It's arguably more natural to an arbitrary set of start states S C Q instead of just one. Then
an NFA accepts a string w if and only if there is a sequence of transitions consistent with w
from some start state to some accepting state, or more formally if §*(S,q) NA# @. Change
the definition and chase through all the theorems? Or prove equivalence and bounce back
and forth, like we already do for ¢-transitions?

4.2 Intuition

There are at least three useful ways to think about non-determinism.

Clairvoyance. Whenever an NFA reads symbol a in state g, it chooses the next state from the
set 6(q, a), always magically choosing a state that leads to the NFA accepting the input string,
unless no such choice is possible. As the BSD fortune file put it, “Nondeterminism means never
having to say you're wrong.”! Of course real machines can’t actually look into the future; that’s
why I used the word “magic”.

Parallel threads. An arguably more “realistic” view is that when an NFA reads symbol a in
state g, it spawns an independent execution thread for each state in &(q,a). In particular, if
6(q, a) is empty, the current thread simply dies. The NFA accepts if at least one thread is in an
accepting state after it reads the last input symbol.

1This sentence is a riff on a horrible aphorism that was (sadly) popular in the US in the 70s and 8os. Fortunately,
everyone seems to have forgotten the original saying, except maybe for that one time it was mocked on The Simpsons.
Ah, who am I kidding? Nobody remembers The Simpsons either.

Models of Computation Lecture 4: Nondeterministic Automata [Sp’18]

Equivalently, we can imagine that when an NFA reads symbol a in state q, it branches into
several parallel universes, one for each state in 6(q,a). If 6(q, a) is empty, the NFA destroys the
universe (including itself). Similarly, if the NFA finds itself in a non-accepting state when the
input ends, the NFA destroys the universe. Thus, when the input is gone, only universes in which
the NFA somehow chose a path to an accept state still exist. One slight disadvantage of this
metaphor is that if an NFA reads a string that is not in its language, it destroys all universes.

Proofs/oracles. Finally, we can treat NFAs not as a mechanism for computing something, but as
a mechanism for verifying proofs. If we want to prove that a string w contains one of the suffixes
00 or 11, it suffices to demonstrate a single walk in our example NFA that starts at s and ends
at ¢, and whose edges are labeled with the symbols in w. Equivalently, whenever the NFA faces a
nontrivial choice, the prover can simply tell the NFA which state to move to next.

This intuition can be formalized as follows. Consider a deterministic finite state machine
whose input alphabet is the product & x Q of an input alphabet = and an oracle alphabet (.
Equivalently, we can imagine that this DFA reads simultaneously from two strings of the same
length: the input string w and the oracle string w. In either formulation, the transition function
has the form &: Q x (X x 2) — Q. As usual, this DFA accepts the pair (w, w) € (X x)* if and
only if 6*(s, (w, w)) € A. Finally, M nondeterministically accepts the string w € %* if there is
an oracle string w € Q* with |w| = |w| such that (w, w) € L(M).

4.3 e-Transitions

It is fairly common for NFAs to include so-called e-transitions, which allow the machine to
change state without reading an input symbol. An NFA with e-transitions accepts a string w
if and only if there is a sequence of transitions s -, Q1 =, q SERLR q; where the final
state g, is accepting, each a; is either ¢ or a symbol in ¥, and aja,---a, = w.

For example, consider the following NFA with e-transitions. (For this example, we indicate
the e-transitions using large red arrows; we won’t normally do that.) This NFA deliberately has

more g-transitions than necessary.

1,0

A (rather silly) NFA with e-transitions

The NFA starts as usual in state s. If the input string is 100111, the the machine might
non-deterministically choose the following transitions and then accept.

€ 1 € € (0] 0] € 1 1 € 1 € €
s—s—s—d—a—b—c—d—e—f—e—f—c—¢g

More formally, the transition function in an NFA with e-transitions has a slightly larger
domain 6: Q x (XU {g}) — 22. The e-reach of a state q € Q consists of all states r that satisfy
one of the following conditions:

* either r =g,

Models of Computation Lecture 4: Nondeterministic Automata [Sp’18]

e orr € 8(q,¢) for some state q’ in the e-reach of q.

In other words, r is in the e-reach of q if there is a (possibly empty) sequence of e-transitions
leading from q to r. For example, in the example NFA above, the ¢-reach of state f is {a,c,d, f, g}.

Now we redefine the extended transition function §*: Q x &* — 22, which transitions on
arbitrary strings, as follows:

g-reach(p) ifw=g,

* py—
5" (p,w):= U U 5*(q,x) if w=ax.
ree-reach(p) q€&(r,a)

If we abuse notation by writing 6(S,a) = qus 6(g,a) and 6*(S,w) = qus 5*(g,w) and
g-reach(S) = qus e-reach(q) for any subset of states S C Q, this definition simplifies as follows:

6*(p,w) :=
(p,w) 6*(6(e-reach(p),a),x) if w=ax.

{s-reach(p) ifw=e,
Finally, as usual, an NFA with e-transitions accepts a string w if and only if 6*(s, w) contains at
least one accepting state.

Although it may appear at first that e-transitions give us a more powerful set of machines,
NFAs with and without e-transitions are actually equivalent. Given an NFA M = (%,Q,s,A,6)
with e-transitions, we can construct an equivalent NFA M’ = (%,Q’,s’,A’, 6") without e-transitions
as follows:

Q' :=Q

s'=s

A={qeQ | e-reach(q) NA # @}
6'(q,a) = 6(e-reach(q), a)

Straightforward definition-chasing now implies that M and M’ accept exactly the same language.
Thus, whenever we reason about or design NFAs, we are free to either allow or forbid e-transitions,
whichever is more convenient for the task at hand.

For example, our previous NFA with e-transitions can be transformed into an equivalent NFA
without e-transitions, as shown in the figure below. The NFA on the right has two unreachable
states a and d, but whatever.

A (rather silly) NFA with e-transitions, and an equivalent NFA without e-transitions

%k Kk

Models of Computation Lecture 4: Nondeterministic Automata [Sp’18]

This reduction might be easier to understand incrementally.
* For every transition pair p = q = r, add a direct transition p —%, r. This addition
does not change the accepted language.

* For each transition p 2 q where g is an accepting state, make p an accepting state.
This modification does not change the accepted language.

* When no more of the previous modifications are possible, delete all e-transitions. This
modification does not change the accepted language.

4.4 Kleene’s Theorem

We are now finally in a position to prove the following fundamental fact, first observed by Steven
Kleene in 1951:

Theorem 4.1. A language L can be described by a regular expression if and only if L is the
language accepted by a DFA.

We will prove Kleene’s fundamental theorem in four stages:

* Every DFA can be transformed into an equivalent NFA.
* Every NFA can be transformed into an equivalent DFA.
* Every regular expression can be transformed into an equivalent NFA.
* Every NFA can be transformed into an equivalent regular expression.
The first of these four transformations is completely trivial; a DFA is just a special type of NFA

where the transition function always returns a single state. Unfortunately, the other three
transformations require a bit more work.

4.5 NFA to DFA: The Subset Construction

In the parallel-thread model of NFA execution, an NFA does not have a single current state, but
rather a set of current states. The evolution of this set of states is determined by a modified
transition function §’: 22 x & — 2%, defined by setting 6'(Ba) := Upep 5(p,a) for any set of
states P C Q and any symbol a € %. When the NFA finishes reading its input string, it accepts if
and only if the current set of states intersects the set A of accepting states.

This formulation makes the NFA completely deterministic! We have just shown that any NFA
M =(%,Q,s,A,5) is equivalent to a DFA M’ = (%,Q/,s’,A’, 6) defined as follows:

Q :=2%
s’ = {s}
A={scqQ|sna#g}

5'(q,a) == U 6(p,a) forall¢ CQ and a € X.
peq’

Similarly, any NFA with e-transitions is equivalent to a DFA defined as follows:
Q =22
s = {s}

Models of Computation Lecture 4: Nondeterministic Automata [Sp’18]

A= {S cQ | g-reach(S)NA # @}

6'(q’,a) := U U o(r,a) forallqg’ CQand a € X.
peq’ ree-reach(p)

This conversion from NFA to DFA is often called the subset construction, but that name is
somewhat misleading; it’s not a “construction” so much as a change in perspective.

For example, the subset construction converts the 4-state NFA on the first page of this note
into the following 16-state DFA. To simplify notation, I've named each DFA state using a simple
string, omitting the braces and commas from the corresponding subset of NFA states; for example,
DFA state sbc corresponds to the subset {s, b, c} of NFA states.

The 16-state DFA obtained from our first 4-state NFA by the subset construction.
Only the five yellow states are reachable from the start state.

An obvious disadvantage of this “construction” is that it (usually) leads to DFAs with far more
states than necessary, in part because many states cannot even be reached from the start state.
In the example above, there are eleven unreachable states; only five states are reachable from s.

Incremental Subset Construction

Instead of building the entire subset DFA and then discarding the unreachable states, we can avoid
the unreachable states from the beginning by constructing the DFA incrementally, essentially by
performing a breadth-first search of the DFA graph.

To execute this algorithm by hand, we prepare a table with || + 3 columns, with one row for
each DFA state we discover. In order, these columns record the following information:

¢ The DFA state (as a subset of NFA states)
* The e-reach of the corresponding subset of NFA states
* Whether the DFA state is accepting (that is, whether the e-reach intersects A)

* The output of the transition function for each symbol in .

We start with DFA-state {s} in the first row and first column. Whenever we discover an unexplored
state in one of the last |X| columns, we copy it to the left column in a new row. To reduce
notational clutter, we write all subsets of NFA states without braces or commas.

For example, given the NFA with e-transitions from Section 4.3, the standard subset construc-
tion would produce a DFA with 256 states, but the incremental subset construction produces an
nine-state DFA, described by the following table and illustrated on the next page. We would fill
in the first row, for the starting DFA state s, as follows:

Models of Computation Lecture 4: Nondeterministic Automata [Sp’18]

* The e-reach of NFA state s is {s,a, d}, so we write sad in the first column.

* None of the NFA states {s,a,d} is an accepting state, so {s} is not an accepting state of the
DFA, so we do not check the second column.

e Next, 6'({s,a,d},0)=05(s,0)Ud(a,0)ud(d,0)={s}u{b}ud = {s, b}, so we write sb
in the third column. Because sb does not already appear in the first column in any existing
row, we have discovered a new DFA state! We start a new row for DFA state sb.

e Finally, 6'({s,a,d},1)=6(s,1)Ud(a,1)ud(d,1)={s} U@ U {e} = {s, e}, so we write se
in the fourth column, and we start a new row for the new DFA state se.

We now have two new rows to fill in, corresponding to states sb and se. The algorithm continues
filling in rows (and discovering new rows) until all rows are filled, ending with the following
table:

q" | e-reach(q’) qg eA? | 5(q,0) 5'(¢’, 1)
sad sb 1 se
sb sabd sbe se
se sade : sb 5 sef

sbc | sabedg ;- v o sbcg | seg
sef sacdefg v sbg sefg
sbcg sabcdg v sbcg seg
seg sadeg v sbg sefg
sbg sabdg v sbcg seg
sefg sacdefg v sbg sefg

@ ——(@x) e

An eight-state NFA with e-transitions, and the output of the incremental subset construction for that NFA.

Although it avoids unreachable states, the incremental subset algorithm still gives us a DFA
with far more states than necessary, intuitively because it keeps looking for 00 and 11 substrings
even after it’s already found one. After all, after the NFA finds both 00 and 11 as substrings, it
doesn’t kill all the other parallel execution threads, because it can’t. NFAs often have significantly
fewer states than equivalent DFAs, but that efficiency also makes them kind of stupid.

4.6 Regular Expression to NFA: Thompson’s Algorithm

We now turn to the core of Kleene’s theorem, which claims that regular languages (described by
regular expressions) and automatic languages (accepted by finite-state automata) are the same.

Models of Computation Lecture 4: Nondeterministic Automata [Sp’18]

Lemma 4.2. Every regular language is accepted by a nondeterministic finite-state automaton.

Proof: In fact, we will prove the following stronger claim: Every regular language is accepted
by an NFA with exactly one accepting state, which is different from its start state. The following
construction was first described by Ken Thompson in 1968. Thompson’s algorithm actually proves
a stronger statement: For any regular language L, there is an NFA that accepts L that has exactly
one accepting state t, which is distinct from the starting state s.

Let R be an arbitrary regular expression over an arbitrary finite alphabet 2. Assume that for
any sub-expression S of R, the language described by S is accepted by an NFA with one accepting
state distinct from its start state, which we denote pictorially by % s 1@. There are six cases
to consider—three base cases and three recursive cases—mirroring the recursive definition of a
regular expression.

* If R=, then L(R) = & is accepted by the trivial NFA © ©.
* If R =¢, then L(R) = {¢} is accepted by a different trivial NFA s—=>©.

* If R = a for some symbol a € %, then L(R) = {a} is accepted by the NFA —%@©. (The
case where R is a single string with length greater than 1 reduces to the single-symbol case
by concatenation, as described in the next case.)

* Suppose R = ST for some regular expressions S and T. The inductive hypothesis implies
that the languages L(S) and L(T) are accepted by NFAs and T ©, respectively.

Then L(R) = L(ST) = L(S) * L(T) is accepted by the NFA % s 0+ 1 1, built by
connecting the two component NFAs in series.

* Suppose R = S + T for some regular expressions S and T. The inductive hypothesis

implies that the language L(S) and L(T) are accepted by NFAs and {1 19,
respectively. Then L(R) = L(S+ T) = L(S)U L(T) is accepted by the NFA ae(©,

built by connecting the two component NFAs in parallel with new start and accept states.

* Finally, suppose R = S* for some regular expression S. The inductive hypothesis implies that
the language L(S) is accepted by an NFA % s 1©. Then the language L(R) = L(S*) = L(S)*

is accepted by the NFA @j@

In all cases, the language L(R) is accepted by an NFA with one accepting state, which is different
from its start state, as claimed. O

As an example, given the regular expression (04 10%1)* of strings containing an even number
of 1s, Thompson’s algorithm produces a 14-state NFA shown on the next page. As this example
shows, Thompson’s algorithm tends to produce NFAs with many redundant states. Fortunately,
just as there are for DFAs, there are algorithms that can reduce any NFA to an equivalent NFA
with the smallest possible number of states.

Interestingly, applying the incremental subset algorithm to Thompson’s NFA tends to yield
a DFA with relatively few states, in part because the states in Thompson’s NFA tend to have
large e-reach, and in part because relatively few of those states are the targets of non-e-
transitions. Starting with the Thompson’s NFA for (0 + 10*1)*, for example, the incremental
subset construction yields a DFA with just five states.

Models of Computation Lecture 4: Nondeterministic Automata [Sp’18]

—|
£
oL j
&
The NFA constructed by Thompson'’s algorithm for the regular expression (0 + 10*1)*.
The four non-¢-transitions are drawn with with bold red arrows for emphasis.

q’ | e-reach(q’) q eA? | 5(q,0) 6'(q,1)
s sabm |V k c
k sabjklm | k 5 c
c cdegh : f i
fl defeh f i
i sabjilm | k c

The DFA computed by the incremental subset algorithm from Thompson’s NFA for (0 + 10*1)*,

This DFA can be further simplified to just two states, by observing that all three accepting
states are equivalent, and that both non-accepting states are equivalent. But still, five states is
pretty good, especially compared with the 2'% = 16384 states that the naive subset construction
would yield!

4.7 Another Example

Here is another example of all the algorithms we’ve seen so far, starting with the regular
expression (0 + 1)*(00 4+ 11)(0 + 1)*, which describes the language accepted by our very first
example NFA. Thompson’s algorithm constructs the following 18-state monster:

Thompson’s NFA for the regular expression (0 + 1)*(00 + 11)(0 + 1)*,
with the g-reach of the start state s highlighted.

Given this NFA as input, the incremental subset construction computes the following table,
leading to a DFA with just nine states. Yeah, the e-reaches get a bit ridiculous; unfortunately, this
is typical for Thompson’s NFA. As usual, the resulting DFA has far more states than necessary.

Models of Computation Lecture 4: Nondeterministic Automata [Sp’18]

q e-reach(q’) L q'eA’?|5'(q,0) | &'(d,1)
s sabdghim ¢ en

g sabdfghijkm gl © en
en sabdfghmno g © enp
gl sabdfghijklmgrtuwsz N glv L oenx
enp sabdfghmnopgrtuwz @ gv | enpx
glv | sabdfghijklmgrtuvwyz i@ glv i enx
enx | sabdfghmnopqrtuwxyz i v gv | enpx
gv sabdfghijkmrtuvwyz & glv i enx
enpx | sabdfghmnopqrtuwxyz : v gv | enpx

The DFA computed by the incremental subset algorithm from Thompson’s NFA for (0 + 1)*(00 + 11)(0 + 1)*.

Finally, the DFA-minimization algorithm from the previous lecture note correctly discovers
that all six accepting states of the incremental-subset DFA are equivalent, and thus reduces the
DFA to just four states.

The minimal DFA that accepts the language (0 + 1)*(00 + 11)(0 + 1)*.

*4.8 NFA to Regular Expression: Han and Wood’s Algorithm

The only component of Kleene’s theorem left to prove is that every language accepted by an NFA
is regular. I'll describe a relatively recent proof, due Yo-Sub Han and Derick Wood in 20052, that
is morally equivalent to Kleene’s 1951 argument, but uses more modern standard notation.
Recall that a standard NFA can be represented by a state-transition graph, whose vertices are
the states and whose edges represent possible transitions. Each edge is labeled with a single
symbol in 3. A string w € %* is accepted if and only if there is a sequence of transitions

a; a, as ap
ST Q2 Ty

2Yo-Sub Han* and Derick Wood. The generalization of generalized automata: Expression automata. International
Journal of Foundations of Computer Science 16(3):499-510, 2005.

10

Models of Computation Lecture 4: Nondeterministic Automata [Sp’18]

where the final state q, is accepting and a;a,---a, = w.

We've already seen that NFAs can be generalized to include e-transitions; we can push this
generalization further. A string NFA allows each transition p—q to be labeled with an arbitrary
string x(p—q) € ¥*. We are allowed to transition from state p to state g if the label x(p—q) is a
prefix of the remaining input. Thus, a string w € X* is accepted if and only if there is a sequence
of transitions

X1 X2 X3 X¢
S— 1@y
where the final state g, is accepting, and x; ® x5 ® - -+ ® x, = w. Thus, an NFA with e-transitions
is just a string NFA where every label has length O or 1. Any string NFA can be converted into an
equivalent standard NFA, by subdividing each edge p—q into a path of length |x(p—q)| (unless
x(p—q) =¢).

Finally, Han and Wood define an expression automaton as a finite-state machine where each
transition p—q is labeled with an arbitrary regular expression R(p—q). We can transition from
state p to state q if any prefix of the remaining input matches the regular expression R(p—q).
Thus, a string w € 3* is accepted by an expression automaton if and only if there is a sequence
of transitions

Ry R, R3 Ry
S— Q1@ Ty
where the final state g, is accepting, and we can write w = x; ® X5 ® -+ ®* X, = w, where each
substring x; matches the corresponding regular expression R;.
More formally, an expression automaton consists of the following components:

* A finite set X called the input alphabet

e Another finite set Q whose elements are called states
* A unique start state s € Q

* A unique target state t € Q \ {s}

* A transition function R: (Q\ {t}) x (Q\ {s}) — Reg(X), where Reg(X) is the set of regular
expressions over ..

The requirement that the start and target states are unique and disatinct is not essential to the
model. We impose this requirement for convenience of the equivalence proof; it can be easily
enforced using e-transitions.

Expression automata are even more nondeterministic than NFAs. A single string could match
several (even infinitely many) transition sequences from s to t, and it could match each of
those sequences in several (even infinitely many) different ways. A string w is accepted if any
decomposition of w into a sequence of substrings matches any sequence of transitions from s to t.
Conversely, a string might match no state sequences, in which case the string is rejected.

Two extreme special cases of expression automata are already familiar. First, every regular
language is clearly the language of an expression automaton with exactly two states. Second,
with only minor modifications, any DFA or NFA can be converted into an expression automaton
with trivial transition expressions. Thompson’s algorithm can be used to transform any expression
automaton into a standard NFA (with e-transitions), by recursively expanding any nontrivial
transition expression. To complete the proof of Kleene’s theorem, we show how to convert an
arbitrary expression automaton into a regular expression, by repeatedly deleting vertices.

Lemma 4.3. Every expression automaton accepts a regular language.

11

Models of Computation Lecture 4: Nondeterministic Automata [Sp’18]

Proof: Let E =(Q,%,R,s, t) be an arbitrary expression automaton. Assume that any expression
automaton with fewer states than E accepts a regular language. There are two cases to consider,
depending on the number of states in Q:

* If Q = {s, t}, then trivially, E accepts the regular language R(s—t).

* On the other hand, suppose Q has more than two states; fix an arbitrary state g € Q \ {s, t}.
We modify the automaton, without changing its language, so that state g is redundant and
can be removed. Define a new transition function R": Q X Q — Reg(X) by setting

R'(p-r) := R(p—r)+R(p~q)R(g—q)*R(qg-T).

With this modified transition function in place, any string w that matches the sequence
p—q—q—---—q—r with any number of ¢’s also matches the single transition p—r. Thus,
by induction, if w matches a sequence of states, it also matches the subsequence obtained
by removing all ¢’s. Let E’ be the expression automaton with states Q" = Q \ {q} that uses
this modified transition function R’. This new automaton accepts exactly the same strings
as the original automaton E. Because E’ has fewer states than E, the inductive hypothesis
implies E’ accepts a regular language.

In both cases, we conclude that E accepts a regular language. O

This proof can be mechanically translated into an algorithm to convert any DFA or NFA into
an equivalent regular expression, via a sequence of expression automata with fewer and fewer
states, but increasingly complex transition expressions.

O a0

One step in Kleene’'s/Han and Wood’s reduction algorithm.

The figure on the next page shows Han and Wood’s algorithm in action, starting with a DFA
that accepts the binary representations of non-negative integers divisible by 3, possibly with extra
leading Os. (State i means the binary number we’ve read so far is congruent to i mod 3.) First
we convert the DFA into an expression automaton by adding a new accept state. (We don’t need
to add a new start state, because there are no transitions the original start state s.) Then we
remove state2, then state 0, and finally state 1, updating the transition expressions between
any remaining states at each iteration. For the sake of clarity, edges p—q with R(p—q) = @ are
omitted from the figures. The final regular expression 00* + (00*1 + 1)(10*1 + 01*0)*10* can
be slightly simplified to 0*0 + 0*1(10*1 4+ 01*0)*10*, which is precisely the regular expression
we gave for this language back in Lecture Note 2!

Given an NFA with n states (including s and t), Han and Wood’s algorithm iteratively removes
n— 2 states, updating O(n?) transition expressions in each iteration. If the concatenation and
Kleene star operations could be performed in constant time, the resulting algorithm would run in
0(n®) time. However, in the worst case, the transition expressions grows in length by roughly a
factor of 4 in each iteration, so the final expression has length ©(4"). If we insist on representing
the expressions as explicit strings, the worst-case running time is actually ©(4").

12

Models of Computation Lecture 4: Nondeterministic Automata [Sp’18]

Converting a DFA into an equivalent regular expression using Han and Wood'’s algorithm.

4.9 Regular Language Transformations

We have already seen that many functions of regular languages are themselves regular: unions,
concatenations, and Kleene closure by definition. and intersections and differences by product
construction on DFA. However, the set of regular languages is closed under a much richer class of
functions.

Suppose we wanted to prove that regular languages are closed under some function f; that
is, for every regular language L, we want to prove that the language f (L) is also regular. There
are two general techniques to prove such a statement:

* Describe an algorithm that transforms an arbitrary regular expression R into a new regular
expression R’ such that L(R") = f(L(R)).

* Describe an algorithm that transforms an arbitrary DFA M into a new NFA M’ such that

L(M") = f(L(M)).

The equivalence between regular expressions and finite automata implies that in principle we
can always use either technique, but in practice, the second one is far more powerful and usually
simpler. The asymmetry in the second technique is important. We start with a DFA for L to
impose as much structure as possible in the input; we aim for an NFA with e-transitions to give
ourselves as much freedom as possible in the output.3

For our first example, I'll describe proofs using both techniques.

Lemma 4.4. For any regular language L, the language LR = {w® | w € L} is also regular.

Proof (regular expression to regular expression): Let R be an arbitrary regular expression
such that L = L(R). Assume for any proper subexpression S of R that L(S)R is regular. There are
five cases to consider, mirroring the recursive definition of regular expressions:

e« IfR=@, then LR=L =@, so L(R) = LR.

* Suppose R consists of a single word w. Let R” = wR. Then L(R) = {wR} = LR,

3We could give ourselves even more freedom by constructing an expression automaton, but creativity thrives on
constraint.

13

Models of Computation Lecture 4: Nondeterministic Automata [Sp’18]

e Suppose R = A+ B. The inductive hypothesis implies that there are regular expressions
A’ and B’ such that L(A") = L(A)® and L(B’) = L(B)R. Let R = A’ +B’. Then L(R) =
LAYULB)=LARULBIR = (LA ULB)=LR

* Suppose R = A * B. The inductive hypothesis implies that there are regular expressions
A’ and B’ such that L(A") = L(A)R and L(B") = L(B)?. Let R" =B’ * A'. Then L(R) =
L(B) * L(A) = L(B)" » L(A)* = (L(A) * L(B))* = L~.

* Finally, suppose R = A*. The inductive hypothesis implies that there is a regular expression A’
such that L(A) = L(A)R. Let R’ = (A)*. Then L(R") = L(A)* = (L(A®)* = (L(A)*)R = LR

In all cases, we have constructed a regular expression R’ such that L(R") = L®. We conclude that
LR is regular. O

Careful readers may be unsatisfied with the previous proof, because it assumes several
“obvious” properties of string and language reversal. Specifically, for all strings x and y and all
languages L and L', we assumed the following:

© (xey)fi=yRex®
° (L A L/)R — (L/)R . LR.
e (LULNDR=LRU(LNHR.
° (L*)R — (LR)*.
All of these claims are all easy to prove by inductive definition-chasing.

Proof (DFA to NFA): Let M = (%,Q,s,A, 8) be an arbitrary DFA that accepts L. We construct
an NFA M® = (%, QR, sk AR, 5R) with e-transitions that accepts LR, intuitively by reversing every
transition in M, and swapping the roles of the start state and the accepting states. Because
M does not have a unique accepting state, we need to introduce a special start state s®, with
e-transitions to each accepting state in M. These are the only e-transitions in M~.

QA =Qu{s"}

At ={s}
SRR e)=A
SRR a)=0 forallaeXx
8%q,e)=2 forallgeQ
5R(q,a)={p | q€5(p,a)} forallgeQandaeX

Routine inductive definition-chasing now implies that the reversal of any sequence go—q;— - —q,
of transitions in M is a valid sequence q;—q,_;— - -+ —qq of transitions in M®. Because the
transitions retain their labels (but reverse directions), it follows that M accepts any string w if
and only if MR accepts w¥.

We conclude that the NFA MR accepts LR, so LR must be regular. O

Lemma 4.5. For any regular language L, the language half(L) := {w | ww € L} is also regular.

Proof: Let M = (%,Q,s,A, &) be an arbitrary DFA that accepts L.
Intuitively, we construct an NFA M’ that reads its input string w and simulates the original
DFA M reading the input string ww. Our overall strategy has three parts:

14

Models of Computation Lecture 4: Nondeterministic Automata [Sp’18]

e First M’ non-deterministically guesses the state h = §*(s, w) that M will reach after reading
input w. (We can’t just run M on input w to compute the correct state h, because that
would consume the input string!)

* Then M’ runs two copies of M in parallel (using a product construction): a “left” copy
starting at s and a “right” copy starting at the (guessed) halfway state h.

* Finally, when M’ is done reading w, it accepts if and only if the first copy of M actually
stopped in state h (so our initial guess was correct) and the second copy of M stopped in
an accepting state. That is, M’ accepts if and only if 6*(s,w) = h and 6*(h, w) € A.

To implement this strategy, M’ needs to maintain three states of M: the state of the left copy
of M, the guess h for the halfway state, and the state of the right copy of M. The first and
third states evolve according to the transition function &, but the second state never changes.
Finally, to implement the non-deterministic guessing, M’ includes a special start state s’ with
e-transitions to every triple of the form (s, h, h).

Summing up, our new NFA M’ = (%,Q’,s’,A’, 5") is formally defined as follows.

Q' =@QxQxQ) U {s'}
A ={(h,h,q)| heQ and q €A}
§'(s,e)={(s,h,h) | heQ}

5'(s,a) =0 forallae
5'((p,h,q),e) =0 for all p,h,q €Q
5'((p,h,q),a) = {(5(p, a),h,6(q, a))} forall p,h,geQandaex

Exercises
1. For each of the following regular expressions, describe or draw two finite-state machines:

* An NFA that accepts the same language, constructed using Thompson’s algorithm.

* An equivalent DFA, built from the previous NFA using the incremental subset con-
struction. For each state in your DFA, identify the corresponding subset of states in
your NFA. Your DFA should have no unreachable states.

(@) (014+10)(0+1+¢)

() (e+1)(0L)*(e+0)

() 1"+ (10)*+(100)*

(d (e+0+00)(1+10+100)*
(e) (0+1)(0+1))

) e+0(O+1)+1(1+0)*

2. The accepting language of an NFA M = (%, Q, s, A, 6) is defined as follows:
L(M):={we x| 5*(s,w)NA#O}.

Kleene’s theorem (described here as Han and Wood’s algorithm) implies that L(M) is
regular. Prove that the following languages associated with M are also regular:

15

Models of Computation Lecture 4: Nondeterministic Automata [Sp’18]

(@) LY(M):= {W ex* | AC 6*%(s, w)}. That is, a string w is in the language LY (M) if and
only if 6*(s, w) contains every accepting states.

(b) LE(M) := {w ex* { 6*(s,w) QA}. That is, a string w is in the language L<(M) if
and only if 6*(s, w) contains only accepting states.

() LT (M) := {w ex* | o*(s,w) :A}. That is, a string w is in the language L=(M) if
and only if 6*(s, w) is exactly the set of accepting states.

3. A certain professor who really should know better once woke up in the middle of the night
with a startling revelation—Thompson’s algorithm doesn’t need all those e-transitions!
Filled with the certainty that only sleep deprivation can bring, he ran to his laptop and
quickly changed two cases in his description of Thompson’s algorithm.

e WhenR =S ¢ T, instead of connecting the accept state of to the start state
of with an e-transition, we can just identify those two states to build the

simpler NFA »(_s (1 ©!

* When R = S§*, instead of introducing two new states and four e-transitions, we can
just add two e-transitions between the start and accept states of to build the

&

simpler NFA !

&

Satisfied with his simplification, he thanked the penguin who gave him the idea, and
then flew his hat back into the ocean marshmallows, where a giant man with the head of a
dog gave him the power of bread. The next morning, while he was proudly teaching his
new simplified proof for the first time, he realized his horrible mistake.

Prove that neither of the professor’s optimizations is actually correct.

(a) Find a regular expression R, such that the NFA constructed from R by Thompson’s
algorithm with only the first modification accepts strings that are not in L(R).

(b) Find a regular expression R, such that the NFA constructed from R by Thompson’s
algorithm with only the second modification accepts strings that are not in L(R).

4. A Moore machine is a variant of a finite-state automaton that produces output; Moore
machines are sometimes called finite-state transducers. For purposes of this problem, a
Moore machine formally consists of six components:

* A finite set X called the input alphabet

* A finite set I called the output alphabet

* A finite set Q whose elements are called states
* Astartstate s € Q

e A transition function 6: Q x ¥ — Q

* An output function w: Q — T

16

Models of Computation Lecture 4: Nondeterministic Automata [Sp’18]

More intuitively, a Moore machine is a graph with a special start vertex, where every node
(state) has one outgoing edge labeled with each symbol from the input alphabet, and each
node (state) is additionally labeled with a symbol from the output alphabet.

The Moore machine reads an input string w € ¥* one symbol at a time. For each
symbol, the machine changes its state according to the transition function 6, and then
outputs the symbol w(q), where ¢ is the new state. Formally, we recursively define a
transducer function w™*: ¥* x Q — I'* as follows:

€ ifw=e¢

= {w(5(a,Q)) (0*(x,5(a,q)) ifw=ax

Given the input string w € ¥*, the machine outputs the string w*(w,s) € I'*. To simplify
notation, we define M(w) = w*(w,s).

Finally, the output language L°(M) of a Moore machine M is the set of all strings that
the machine can output:
L°(M) :={M(w) | we =}
(a) Let M be an arbitrary Moore machine. Prove that L°(M) is a regular language.

(b) Let M be an arbitrary Moore machine whose input alphabet X and output alphabet T
are identical. Prove that the language

L=M)={wez"| M(w) =w}

is regular. Strings in L=(M) are also called fixed points of the function M : ¥* — X*.

*(c) Asin part (b), let M be an arbitrary Moore machine whose input and output alphabets
are identical. Prove that the language {w ex* | MMw))= w} is regular.

[Hint: Parts (a) and (b) are easier than they look!]

5. A Mealy machine is a variant of a finite-state automaton that produces output; Mealy
machines are sometimes called finite-state transducers. For purposes of this problem, a
Mealy machine formally consists of six components:

* A finite set ¥ called the input alphabet

* A finite set I' called the output alphabet

A finite set Q whose elements are called states

* A start states € Q

e A transition function 6: Q x = — Q

* An output function w: Q x X — T
More intuitively, a Mealy machine is a graph with a special start vertex, where every node
(state) has one outgoing edge labeled with each symbol from the input alphabet, and
each edge (transition) is additionally labeled with a symbol from the output alphabet.

(Mealy machines are closely related to Moore machines, which produce output at each
state instead of at each transition.)

17

Models of Computation Lecture 4: Nondeterministic Automata [Sp’18]

The Mealy machine reads an input string w € %* one symbol at a time. For each symbol,
the machine changes its state according to the transition function §, and simultaneously
outputs a symbol according the output function w. Formally, we recursively define a
transducer function w™*: Q x X* — I'* as follows:

€ ifw=¢

@(qw)= {a)(q, a) - w*(6(g,a),x) ifw=ax

Given any input string w € ©*, the machine outputs the string w*(w,s) € I'*. To simplify
notation, we define M(w) = w™*(w,s).

Finally, the output language L°(M) of a Mealy machine M is the set of all strings that
the machine can output:
L°(M):={Mw)| wex*}

(a) Let M be an arbitrary Mealy machine. Prove that L°(M) is a regular language.

(b) Let M be an arbitrary Mealy machine whose input alphabet ¥ and output alphabet I'
are identical. Prove that the language

L= (M)={weX*| w=w*(s,w)}

is regular. L=(M) consists of all strings w such that M outputs w when given input w;
these are also called fixed points for the transducer function w*.

*(c) Asin part (b), let M be an arbitrary Mealy machine whose input and output alphabets
are identical. Prove that the language {W ex* | M(M(w))= W} is regular.

[Hint: Parts (a) and (b) are easier than they look!]

6. Let L C ¥* be an arbitrary regular language. Prove that the following languages are regular.
Assume # € X.

(a) censor(L) := {#|W| | we L}

(b) dehash(L) = {dehash(w) | welL }, where dehash(w) is the subsequence of w obtained
by deleting every #.

(c) insert#(L) := {x#y | Xy € L}.

(d) delete#(L) := {x_y } x#ye L}.

(e) prefix(L) :={x € ¥*| xy € L for some y € ©*}

® suffix(L) :={y € ¥*| xy € L for some x € ©*}

(g) substring(L) :={y € ¥*| xyz € L for some x,z € ¥*}
(h) superstring(L) :={xyz | y € L and x,z € ¥*}

@ cycle(L) :={xy | x,y € ¥*and yx € L}

(G) prefmax(L) :={x€L|xy€l < y=¢}.

(k) sufmin(L):={xyel|yel < x=c¢}.

18

Models of Computation Lecture 4: Nondeterministic Automata [Sp’18]

(1) minimal(L) := {w € L | no proper substring of w is in L}.
(m) maximal(L) := {w € L | no proper superstring of w is in L}.

(n) evens(L) := {evens(w) | w € L}, where even(w) is the subsequence of w containing
every even-indexed symbol. For example, evens(EVENINDEX) = VNNE.

(0) evens (L) :={w e x* | evens(w) € L}.

(p) subseq(L) :={x € *| x is a subsequence of some y € L}

(q) superseq(L) :={x € &* | some y € L is a subsequence of x}

(1) swap(L) := {swap(w) | w € L}, where swap(w) is defined recursively as follows:

) w if lw| <1
swap(w) =
P ba ¢ swap(x) if w=abx for some a,b € ¥ and x € ©*

(s) oneswap(L):= {xbay | xaby € L where a,be Y and x,y € 2*}.

() left(L) :={x € Z*| xy € L for some y € ©* where |x| = |y|}

(w) right(L) :={y € ©*| xy € L for some x € ©* where |x| = |y|}

(v) middle(L) :={y € &*| xyz € L for some x,z € ©* where |x| = |y| = ||}
(w) halfseq(L) := {w € ©* | w is a subsequence of some string x € L where |x|=2-|w|}
(x) third(L) :={we>*| www € L}

(y) palin(L) := {w ex* { wwh e L}

(z) drome(L):={wex* | whw e L}

7. Let L and L’ be arbitrary regular languages over the alphabet {0,1}. Prove that the
following languages are also regular:

(@ LNL :={xny | x € L and y € L’ and |x| =|y|}, where x My denotes bitwise-and.
For example, 001110101 = 0001.

() LuL :={xuy | x € L and y € L’ with |x| = |y|}, where x L y denotes bitwise-or.
For example, 001110101 =0111.

(© LBL = {x\@y | x € L and y € L’ with |x| = |y|}, where x 8 y denotes bitwise-
exclusive-or. For example, 0011 H0101 =0110.

(d) faro(L,L”):= {faro(x,z) { x € L and z € L’ with |x| = |z|}, where

Z ifx=¢

faro(x,z) := {a -faro(z,y) ifx=ay

For example, faro(0011,0101) =00011011.

(e) shuffles(L,L") := UWGLJGL, shuffles(w, y), where shuffles(w, y) is the set of all strings
obtained by shuffling w and y, or equivalently, all strings in which w and y are

19

Models of Computation Lecture 4: Nondeterministic Automata [Sp’18]

(a)

(b)

*(0)

complementary subsequences. Formally:

{v} ifw=e
shuffles(w, y) = { {w} ify=¢
{a} ¢ shuffles(x,y) U {b} * shuffles(w,z) if w=ax and y = bz

For example, shuffles(01,10) ={0101,0110,1001,1010} and shuffles(00,11) =
{0011,0101,1001,0110,1010,1100}.

Letinc: {0, 1}* — {0, 1}* denote the increment function, which transforms the binary
representation of an arbitrary integer n into the binary representation of n + 1,
truncated to the same number of bits. For example:

inc(0010)=0011 inc(0111)=1000 inc(1111) = 0000 inc(e)=¢

Let L C {0, 1}* be an arbitrary regular language. Prove that inc(L) = {inc(w) |w € L}
is also regular.

Let dbl: {0,1}* — {0, 1}* denote the doubling function, which transforms the binary
representation of an arbitrary integer n into the binary representation of 2n, truncated
to the same number of bits. For example:

dbl(0010) = 0100 dbl(0111)=1110 dbl(1111)=1110 dbl(e) =¢

Let L € {0, 1}* be an arbitrary regular language. Prove that dbl(L) = {dbl(w) |w € L}
is also regular.

Let tpl: {0, 1}* — {0, 1}* denote the tripling function, which transforms the binary
representation of an arbitrary integer n into the binary representation of 3n, truncated
to the same number of bits. For example:

t(pl(0010)=0110 tpl(0111)=0101 tpl(1111)=1101 tpl(e)=¢

Let L C {0, 1}* be an arbitrary regular language. Prove that tpl(L) = {tpl(w) |w € L}
is also regular. [Hint: It may be easier to consider the language tpl(L®)R first.]

. Let L C »* be an arbitrary regular language. Prove that the following languages are
regular.

(a) sqrt(L) := {x ex* | xy €L for some y € %* such that |y| = |x|2}

(b)

log(L) := {x ex* | xy €L for some y € ¥* such that |y| = 2|"|}

(c) flog(L) := {x ex* | xy € L for some y € ©* such that |y| = F|x|}, where F, is the

nth Fibonacci number.

. Let L € ¥* be an arbitrary regular language. Prove that the following languages are
regular.

(a) somerep(L):={w e x*| w" € L for some n > 0}

20

Models of Computation Lecture 4: Nondeterministic Automata [Sp’18]

11.

(b) allreps(L) :={weX*| w" €L for every n > 0}

(c) manyreps(L) :={w € ©* | w" € L for infinitely many n > 0}
(d) fewreps(L) :={w e X*| w" € L for finitely many n > 0}

(e) powers(L) := {w en* | w?" € L for some n > O}

* (f) whatthey(L) := {w € ©* | w" € L for some n € N}, where N is an arbitrary fixed set
of non-negative integers. [Hint: You only have to prove that an accepting NFA exists;
you don’t have to describe how to construct it.]

[Hint: For each of these languages, there is an accepting NFA with at most q? states,
where q is the number of states in some DFA that accepts L.]

For any string w € (0 + 1)*, let (w), denote the integer represented by w in binary. For
example:
(6)y=0 (0010),=2 (0111),=7 (1111),=15

Let L and L’ be arbitrary regular languages over the alphabet {0,1}. Prove that the
following language is also regular:

{w e(0+ 1) | (W) = (x)y + (), for some strings x € L and y € L’}

. Let L C »* be an arbitrary regular language. Prove that the following languages are

regular.
(a) repsqrt(L) = {w exn” | wivl e L}.
(b) replog(L) = {W ex* | wzlw‘ IS L}.
(c) repflog(L) = {W ex* | whiv € L}, where F, is the nth Fibonacci number.

[Hint: The NFAs for these languages use a LOT of states. Let M = (%,Q,s,A,) be a DFA
that accepts L. Imagine that you somehow know &*(q,w) in advance, for every state q € Q.
Ha, ha, ha! Mine is an evil laugh!]

21

	Nondeterminism
	Nondeterministic State Machines
	Intuition
	-Transitions
	Kleene's Theorem
	NFA to DFA: The Subset Construction
	Regular Expression to NFA: Thompson's Algorithm
	Another Example
	NFA to Regular Expression: Han and Wood's Algorithm
	Regular Language Transformations

