HW1D out due The Efter break LAST graded HW 33.Hw only count 24 • • • • • • NP-had Show problem can't be solved quickly ? To prove X is NP-had: Poly-time reduction From Ciccuitsat to X Max Ind Set Max Clique Min Vertex Corer < 3Color Min Colors TSP Longest Cycle Longest Path 4 COLOT Ham Cycle HamPath · Algorithm transform arbitrary cirmit to special instance of X Every good circuit -> good instance of X
 Every good instance of X produced by transformation corries from a good circuit Ales CircuitSat Yes arbitrary special X Circuit \cdot (\cdot, γ) No · C. .). $T_{CircuitSot}(n) \leq O(n) + T_{X}(n)$ \iff $T_{X}(n) \ge T_{ciruitsar}(n) - O(n)$ Hamiltonian Cycle Input: Directed graph G=(V,E) Rupstion: Is there a simple cycle that visits every vertex?

Reduction From 3SAT	· · · · · · · · · · · · · · · · · · ·												
Given arbitrary 3CNF	Formula <u> </u> n variables m clauses												
1) Variable "gadgets"	· · · · · · · · · · · · · · · · · · ·												
· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·												
" a cococococococococococococococococococ													
° COCOCOCOCOCOCO													
d to co co co co co co													
For each variable	a=Ţ												
double chain of 2m vertice	C = F												
Endpoints connected in cyclicsequence													
· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·												
· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·												
	· · · · · · · · · · · · · · · · · · ·												
• • • • • • • • • • • • • • • • • • • •	· · · · · · · · · · · · · · · · · · ·												
· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·												
 	· ·												
(2) Add Ivertex and Gedues +	For each clause												
2) Add Ivertex and Georges +	For each clause												

→ o "mal d O a-T $(a \lor b) \lor c) \land (b \lor \overline{c} \lor \overline{d}) \land (\overline{a} \lor c \lor d) \land (\overline{a} \lor \overline{b} \lor \overline{d}).$ b=TC= F d=1 satistfying assignment Ham cycle in poly time by brute force /

Some useful NP-hard problems. You are welcome to use any of these in your own NP-hardness proofs, except of course for the specific problem you are trying to prove NP-hard. **CIRCUITSAT:** Given a boolean circuit, are there any input values that make the circuit output TRUE? 3SAT: Given a boolean formula in conjunctive normal form, with exactly three distinct literals per clause, does the formula have a satisfying assignment? **MAXINDEPENDENTSET:** Given an undirected graph G, what is the size of the largest subset of vertices in G that have no edges among them? **MAXCLIQUE:** Given an undirected graph G, what is the size of the largest complete subgraph of G? **MINVERTEXCOVER:** Given an undirected graph G, what is the size of the smallest subset of vertices that touch every edge in G? **MINSETCOVER:** Given a collection of subsets S_1, S_2, \ldots, S_m of a set S, what is the size of the smallest subcollection whose union is S? **MINHITTINGSET:** Given a collection of subsets S_1, S_2, \ldots, S_m of a set S, what is the size of the smallest subset of S that intersects every subset S_i? **3COLOR:** Given an undirected graph G, can its vertices be colored with three colors, so that every edge touches vertices with two different colors? HAMILTONIAN PATH: Given graph G (either directed or undirected), is there a path in G that visits every vertex exactly once? **HAMILTONIANCYCLE:** Given a graph G (either directed or undirected), is there a cycle in G that visits every vertex exactly once? **TRAVELINGSALESMAN:** Given a graph G (either directed or undirected) with weighted edges, what is the minimum total weight of any Hamiltonian path/cycle in G? **LONGESTPATH:** Given a graph G (either directed or undirected, possibly with weighted edges), what is the length of the longest simple path in G? **STEINERTREE:** Given an undirected graph G with some of the vertices marked, what is the minimum number of edges in a subtree of G that contains every marked vertex? **SUBSETSUM:** Given a set X of positive integers and an integer k, does X have a subset whose elements sum to k? **PARTITION:** Given a set X of positive integers, can X be partitioned into two subsets with the same sum? **3PARTITION:** Given a set X of 3n positive integers, can X be partitioned into n three-element subsets, all with the same sum? **INTEGERLINEAR PROGRAMMING:** Given a matrix $A \in \mathbb{Z}^{n \times d}$ and two vectors $b \in \mathbb{Z}^n$ and $c \in Z^d$, compute $\max\{c \cdot x \mid Ax \le b, x \ge 0, x \in \mathbb{Z}^d\}.$ **FEASIBLEILP:** Given a matrix $A \in \mathbb{Z}^{n \times d}$ and a vector $b \in \mathbb{Z}^n$, determine whether the set of feasible integer points $\max\{x \in \mathbb{Z}^d \mid Ax \le b, x \ge 0\}$ is empty. **DRAUGHTS:** Given an $n \times n$ international draughts configuration, what is the largest number of pieces that can (and therefore must) be captured in a single move? **SUPERMARIOBROTHERS:** Given an $n \times n$ Super Mario Brothers level, can Mario reach the castle? STEAMEDHAMS: Aurora borealis? At this time of year, at this time of day, in this part of the country, localized entirely within your kitchen? May I see it?

• Smell test														
- Choose a subset Partition ito 2 subsets Assign D's and 1's	SAT													
- Partition into more than 2 subsets, <u>min#subsets</u>	COLOT													
– Largest possible subset – Smallest possible subset	Max Clique Min Vertex Court													
- Orderina objects Long sequences	Hamiltonian Path/Cycle TSI2													
- The problem has 23 in it. - 3PARTITION	3SAT ~ 3COLOTC													
- 3D Matching - If all else fails	35AT CircuitSAT													
- 3D Matching - If all else fails	35AT CircuitSAT													
- 3D Matching - If all else Fails	35AT CircuitSAT													
- 3D Matching - If all else Fails	35AT CircuitSAT													
- 3D Matching - If all else Fails	35AT CircuitSAT													
- JD Matching - If all else Fails	35AFT CircuitSAT													
- J. Antching - I. F. all else Fails	35AFT CircuitSAT													
- J. Matching - I. Fall else Fails	35AFT CircuitSAT													
- 3D Matching - If all else Fails	35AFT CircuitSAT													
- JF all else Fails	35AFT CircuitSAT													
- J.F. all else Fails	35AFT CircuitSAF													
- J.F. Jl else Fails	35AFT Circuit SAT													
- J.F. all else Fails	35AFT Circuit SAT													
- JF all else Fails	35AFT Circuit SAT													
- J. Matching - If all else Fails	3SAT Circuit SAT													
- J.F. all else Fails	3SAT Circuit SAT													
- J.F. all else Fails	3SAT Circuit SAT													

International Dranghts ("Checkers") - 10x10 board (nxn veriat) - "Flying kings" - Captured pieces stay until move is over - forced <u>maximum</u> capture Folloning These rules in NP-hard)4

•	•	•	٠	•	•	•	•	•	٠	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	٠	•	•	•	•	•	٠	٠	•
	•	•	•	•	•	•	•	•	٠	•	•	•	•	•	•	•	•		•	•	•	•	•	•	•	•	•	•	•	•			•	•	•	•
•	•		•	•	•	•	•	•	•	•	•				•	•	•			•	•	•	•		•	•	•	•	•	•	•		•	•	•	•
	•		•	•	•	•	•	•	•	•	•				•	•	•		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	٠	•	•	•	•	•	•	٠	•	•	•	•	•	•	•	•	•	•	•	٠	•	•	•	•	•	•	٠	•	•	•	•	•	•	•	•
•	•	•	•	٠	٠	٠	•	٠	٠	•	•	•	•	•	•	•	•	•	•	•	٠	•	•	•	٠	٠	•	•	•	•	•	•	•	٠	٠	•
•	•	٠	•	•	•	•	•	٠	٠	•	•	•	•	•	•	٠	•	•	•	٠	٠	•	•	•	•	٠	•	•	٠	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	٠	•	•	•	•	•	•	•	•	•	٠	•	•	•	•	•	•	•	•	•
•	•	•	٠	٠	٠	•	•	•	•	•	•	•	•	•	٠	•	•	•	•	•	٠	٠	•	•	•	•	•	•	•	•	•	•	•	٠	٠	•
•	•	•	•	٠	•	•	•	•	٠	•	•	•	•	•	•	•	•	•	•	•	٠	•	•	•	•	•	•	٠	•	•	•	•	•	٠	٠	•
•	•	•	•	•	•	•	•	•	•	٠	٠	•	•	•	•	•	٠	•	•	•	•	•	•	•	•	•	•	•	•	٠	•	•	•	•	•	•
٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	•	٠	٠	٠	•	٠	٠	٠	•	٠	٠	٠	٠	٠
٠	۰	٠	٠	٠	٠	٠	٠	٠	٠	•	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	•	•	٠	٠	•	٠	٠	٠	•	٠	٠	٠	٠	٠
•	•	٠	•	٠	•	•	•	•	٠	•	•	•	•	٠	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	٠	•	•
•	•	•	•	•	•	•	•	٠	•	٠	•	•	•	•	•	•	٠	•	•	•	٠	٠	٠	•	•	•	•	٠	٠	•	•	•	•	•	•	•
•	•	٠	٠	٠	٠	٠	•	٠	٠	•	•	•	•	•	٠	٠	•	•	•	•	٠	٠	•	•	•	•	•	٠	•	•	•	•	•	٠	٠	•
•	•	•	٠	٠	•	•	•	•	•	٠	٠	•	•	•	٠	•	•	•	•	•	•	٠	•	•	•	•	•	•	٠	٠	•	•	•	٠	٠	•
٠	٠	٠	•	•	•	•	٠	٠	٠	٠	٠	٠	•	٠	•	٠	٠	•	•	٠	٠	•	٠	٠	•	٠	٠	٠	٠	٠	•	٠	•	•	•	٠
٠	۰	٠	٠	٠	٠	٠	۰	٠	٠	٠	٠	٠	•	٠	٠	٠	٠	٠	•	٠	٠	٠	•	٠	٠	٠	•	٠	•	٠	•	٠	٠	٠	٠	•
٠	•	•	٠	٠	٠	٠	•	٠	•	•	٠	•	•	•	•	٠	٠	•	٠	٠	٠	٠	•	•	•	•	•	•	٠	٠	٠	•	٠	٠	٠	٠
•	•	٠	٠	•	•	•	•	٠	٠	٠	•	•	•	٠	٠	٠	٠	•	•	٠	٠	•	٠	٠	•	٠	٠	٠	٠	•	•	•	•	•	•	•
•	•	•	٠	٠	٠	٠	•	•	•	•	•	•	•	•	•	•	٠	•	•	•	٠	٠	•	•	•	•	٠	٠	•	•	•	•	•	٠	٠	•
•	•	•	٠	٠	٠	•	•	•	•	٠	•	•	•	•	٠	•	٠	•	•	•	•	٠	•	•	•	•	•	•	•	•	•	•	•	٠	٠	•
•	٠	٠	٠	•	•	•	٠	٠	٠	٠	•	٠	•	٠	٠	٠	٠	•	•	٠	٠	•	٠	٠	•	٠	٠	٠	٠	•	•	٠	٠	•	•	•
٠	۰	٠	•	٠	۰	٠	۰	•	•	•	٠	٠	•	٠	•	٠	٠	٠	٠	٠	•	٠	•	٠	٠	٠	٠	•	٠	٠	٠	٠	٠	•	٠	•
•	٠	•	٠	۰	۰	۰	•	٠	•	•	•	•	•	•	٠	•	٠	٠	•	٠	٠	۰	•	•	٠	٠	٠	٠	٠	•	•	٠	•	٠	۰	•
•	•	•	٠	•	•	•	•	•	•	٠	•	•	•	•	٠	•	٠	•	•	•	٠	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	٠	۰	٠	•	•	•	•	٠	•	•	•	•	•	•	•	•	•	•	•	٠	•	•	•	•	•	•	•	•	•	•	•	•	٠	۰	•
•	•	•	•	•	•	•		•	•	•	•	•	•	•	•	•	•	•		•	•	•	•	•	•	•	•	•	•	•		•	•	•	•	
																						•														
					•	•				•													•													
	•	•	•	•	•	•	•	•	•	•					•	•	•	•			•	•	•	•	•	•	•	•	•			•		•	•	•
			•	•						•					•								•					•						•	•	
			•							•					•		•					•	•				•	•							•	
				•	•	•		•		•	•		•				•				•	•				•	•	•		•				•	•	•
•	٠	•	•	•	•	•	•	•	•	•	•	•		•	•	•	٠	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	٠	•	•	٠	٠	٠	•	•	•	•	٠	•	•	•	•	•	•	•	•	•	•	٠	•	•	•	•	•	•	•	٠	•	•	•	٠	•	٠
•	•	•	•	•	•	•	•	•	٠	•	•	•	•	•	•	•	•		•	•	٠	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•	•		•	•	•	•	•	•	•	•	•	•	•		•	•	•	•	•	•	•	•	•	•	•
	•	•	•	٠	•	•	•	•	•	•	•	•		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	٠	•	•
	•	•	•	٠	٠	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	٠	•	•	•	•	•	•	•	•	•	•	•	٠	٠	•
•	•	٠	٠	٠	٠	٠	٠	٠	٠	٠	•	•	•	٠	•	٠	٠	•	•	٠	٠	٠	٠	•	٠	٠	٠	٠	٠	•	•	٠	•	•	٠	•
٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	•	٠	٠	٠	٠	٠	٠	٠	٠	•	٠	٠	٠	٠	•	٠	٠	٠	٠	٠	•	•	٠	•	٠	٠	٠
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	٠	٠	٠	٠	•	•	•	٠	•	•	•	•	•	•	٠	•	•	•	•	٠	٠	•	•	•	•	٠	٠	•	•	•	•	•	٠	٠	•
•	•	•	٠	٠	•	•	•	•	٠	•	•	•	•	•	•	٠	•	•	•	•	٠	•	•	•	•	•	•	٠	•	•	•	•	•	•	٠	•
•	•	•	•	•	•	•	•	•	•	٠	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
	•		•	•	•	•	•	•	•	•	•	•		•	•	•	•	•		•	•	•	•	•	•	•	•	•	•	•		•		•	•	•