Context-free languages and grammars

September 19, 2019 CS/ECE 374 A Ian Ludden

Reminders

- Midterm 1: Monday, Sep 30, 7-9 p.m.
	- DRES: reserve ASAP
	- Review session(s) next week
	- This is the last material that may be covered by the exam
- Homework 3 due next Tuesday

Learning Objectives

By the end of this lecture, you will be able to:

- Recall the definition of a context-free grammar/language (CFG/CFL).
- Give examples of CFGs/CFLs.
- Derive strings generated by CFGs using parse trees.
- Determine the CFL generated by a CFG.
- Compare/contrast CFLs with regular languages.
- Identify CFGs in Chomsky normal form.

$Context-free = regular + recursion$

Regular languages

- Sequencing (A · B)
- Branching $(A + B)$
- Repetition (A*)

$Context-free = regular + recursion$

Regular Context-free languages

- Sequencing (A · B)
- Branching $(A + B)$
- Repetition (A^*)
- Recursion

All regular languages are context-free. (Proof in Section 5.5 of lecture notes.)

Motivation

- Not all languages are regular
	- L = ${0^n1^n \mid n \ge 0}$
- Recursive languages occur in nature
	- Gentner, T. Q.; Fenn, K. M.; Margoliash, D.; Nusbaum, H. C. (2006). "Recursive syntactic pattern learning by songbirds." Nature. **440** (7088): 1204-1207.
- Natural Language Processing (NLP)
	- Charniak, E. (1997). "Statistical Parsing with a Context-Free Grammar and Word Statistics." AAAI/IAAI.
- Probabilistic modeling of RNA structures
	- Sakakibara Y.; Brown M.; Hughey R.; Mian I. S.; et al. (1994). "Stochastic context-free grammars for tRNA modelling." Nucleic Acids Research. **22** (23): 5112–5120.

Formal Definition

- A **context-free grammar** is a structure defined by:
	- A finite set Σ of symbols or **terminals**
	- A finite set Γ of **non-terminals** (disjoint from Σ)
	- A finite set R of *production rules* of the form A -> w, where A is a non-terminal and w is a string of symbols and non-terminals
	- A starting non-terminal, typically S

 $G = (\Sigma, \Gamma, R, S)$

Example

Context-free grammar for (a subset of) English sentences Symbols are words, strings are sentences

 \langle sentence $\rangle \rightarrow \langle$ noun phrase $\rangle \langle$ verb phrase $\rangle \langle$ noun phrase \rangle \langle noun phrase $\rangle \rightarrow \langle$ adjective phrase $\rangle \langle$ noun \rangle \langle adj. phrase $\rangle \rightarrow \langle$ article \rangle | \langle possessive \rangle | \langle adjective phrase \rangle \langle adjective \rangle \langle verb phrase $\rangle \rightarrow \langle$ verb \rangle | \langle adverb \rangle \langle verb phrase \rangle

 \langle noun $\rangle \rightarrow$ dog | trousers | daughter | nose | homework | time lord | pony | \cdots \langle article $\rangle \rightarrow$ the $|a|$ some $|e$ every $|$ that $| \cdots$

 \langle possessive $\rangle \rightarrow \langle$ noun phrase \rangle 's | my | your | his | her | \cdots

 \langle adjective $\rangle \rightarrow$ friendly | furious | moist | green | severed | timey-wimey | little | \cdots \langle verb $\rangle \rightarrow$ ate | found | wrote | killed | mangled | saved | invented | broke | \cdots \langle adverb $\rangle \rightarrow$ squarely | incompetently | barely | sort of | awkwardly | totally | \cdots

Example

 $\Sigma = \{0, 1\}$ $\Gamma = \{S, A, B, C\}$

Terminals Non-terminals

 $S \rightarrow A \mid B$ $A \rightarrow \emptyset A \mid \emptyset C$ $B \rightarrow B1$ | C1 $C \rightarrow \varepsilon$ | 0C1

Production rules '|' means 'or'

 $XAY \rightsquigarrow XWY$ (produces immediately) $S \sim$ \rightarrow w (produces eventually)

Example

- $\Sigma = \{9, 1\}$ $\Gamma = \{S, A, B, C\}$ $S \rightarrow A \mid B$ $A \rightarrow \emptyset A \mid \emptyset C$ $B \rightarrow B1$ | C1
- $C \rightarrow \epsilon$ | θ C1

 $S \rightarrow A$ \rightarrow 0A \rightarrow 00C \rightarrow 000C1 \rightarrow 0000C11 \rightarrow 0000 ϵ 11 $\rightarrow 000011$

Surely there's a more descriptive way to write this derivation…

On the second try, he walked over it.

Old-school English cla[ss](https://grammar.yourdictionary.com/sentences/diagramming-sentences.html) approach

Parse tree

Parse trees visualize string derivations.

Exercise: Parse trees

 $\Sigma = \{1, 2, +, x\}$ $\Gamma = \{S, A, M, C\}$

Activity (2 min.)

1. Derive $2 + 1 \times 1$ from this grammar using a parse tree.

 $S \rightarrow A \mid M \mid 1 \mid 2$ $A \rightarrow S + S$ $M \rightarrow S \times S$

2. Compare with neighbor(s).

Exercise: Parse trees

 $\Sigma = \{1, 2, +, x\}$ $\Gamma = \{S, A, M, C\}$

 $S \rightarrow A \mid M \mid 1 \mid 2$ $A \rightarrow S + S$ $M \rightarrow S \times S$

From Wikipedia, the free encyclopedia

- A string w is **ambiguous** with respect to a grammar if there is more than one parse tree for w.
- A grammar G is **ambiguous** if some string is ambiguous with respect to G.
- A context-free language L is **inherently ambiguous** if every context-free grammar that generates L is ambiguous. (Contrived examples)

Disambiguating

 $\Sigma = \{1, 2, +, x\}$ $\Gamma = \{S, A, M, C\}$ $S \rightarrow A \mid M \mid 1 \mid 2$ $A \rightarrow S + S$ $M \rightarrow S \times S$

 $\Sigma = \{1, 2, +, x, (,) \}$ $\Gamma = \{S, A, M, C\}$ $S \rightarrow A \mid M \mid 1 \mid 2$ $A \rightarrow (S + S)$ $M \rightarrow (S \times S)$

No longer ambiguous!

Arithmetic Expressions

• Arithmetic expressions, possibly with redundant parentheses, over the variables X and Y:

Every Eexpression is a sum of Terms, every Term is a product of Factors, and every Factor is either a variable or a parenthesized Eexpression.

Regular Expressions

• Regular expressions over the alphabet $\{0,1\}$ without redundant parentheses

 $S \rightarrow T | T+S$ $T \rightarrow F \mid FT$ $F \rightarrow \emptyset$ | W | (T+S) | X * | (Y) * $X \rightarrow \emptyset$ | ϵ | 0| 1 $Y \rightarrow T+S \mid F \cdot T \mid X \star \mid (Y) \star \mid ZZ$ $W \rightarrow \mathcal{E} | Z$ $Z \rightarrow 0 \mid 1 \mid ZZ$

(Regular expressions) (Terms = summable expressions) (Factors = concatenable expressions) (Directly starrable expressions) (Starrable expressions needing parens) $(Words = strings)$ (Non-empty strings)

From grammars to languages

- For non-terminal A, L(A) is the set of all strings generated by A.
- Given context-free grammar $G = (\Sigma, \Gamma, R, S)$, $L(G) = L(S)$.
- A **context-free language** is the language generated by a context-free grammar.
- Often easiest to examine "later" rules first when determining $L(G)$.

 $\Sigma = \{0, 1\}$ $\Gamma = \{S, A, B, C\}$ $S \rightarrow A \mid B$ $A \rightarrow \emptyset A \mid \emptyset C$ $B \rightarrow B1$ | C1 $C \rightarrow \varepsilon$ | 0C1

Lemma: $L(C) = \{0^m1^n | m = n \ge 0\}.$ Proof $($ ⊇ $)$: Let n be an arbitrary non-negative integer. Assume $C \leadsto^* \theta^m 1^m$ for all $m < n$. Two cases: • $n = 0$, $\theta^n 1^n = \varepsilon$, $C \rightarrow \varepsilon$, done. • $n > 1$, $C \rightarrow \emptyset C1$. By I.H., θ C1 \leftrightarrow * θ (θ ⁿ⁻¹1ⁿ⁻¹)1 = θ ⁿ1ⁿ, done. Thus $L(C) \supseteq \{0^m1^n \mid m = n \geq 0\}.$

 $\Sigma = \{0, 1\}$ $\Gamma = \{S, A, B, C\}$

 $S \rightarrow A \mid B$ $A \rightarrow \emptyset A \mid \emptyset C$ $B \rightarrow B1$ | C1 $C \rightarrow \varepsilon$ | 0C1

Lemma: $L(C) = \{0^m1^n | m = n \ge 0\}.$ Proof (\subseteq) : Fix w in L(C). Assume for all x in $L(C)$ with $|x| < |w|$, $x = 0^m 1^m$ for some m ≥ 0 . Two cases (first production): • $C \rightarrow \varepsilon$, $w = \varepsilon = \theta^0 \mathbf{1}^0$, done. • $C \rightarrow 0C1$ So $w = 0x1$ for some x in L(C). By I.H., x $= 0$ ^m1^m for some m ≥ 0 .

So $w = \Theta(\Theta^m \mathbf{1}^m) \mathbf{1} = \Theta^{m+1} \mathbf{1}^{m+1}$, done. Thus $L(C) \subseteq {\{0^m1^n \mid m = n \geq 0\}}.$

- $\Sigma = \{0, 1\}$ $\Gamma = \{S, A, B, C\}$ $L(C) = \{ 0^m 1^n \mid m = n \ge 0 \}.$
- $S \rightarrow A \mid B$ $A \rightarrow \emptyset A \mid \emptyset C$ $B \rightarrow B1$ | C1 $C \rightarrow \varepsilon$ | 0C1 $L(B) = ?$ $L(A) = ?$ $L(S) = ?$

- $\Sigma = \{0, 1\}$ $\Gamma = \{S, A, B, C\}$ $L(C) = \{ 0^m 1^n \mid m = n \ge 0 \}.$
- $S \rightarrow A \mid B$ $A \rightarrow \emptyset A \mid \emptyset C$ $B \rightarrow B1$ | C1 $C \rightarrow \varepsilon$ | 0C1 $L(B) = \{0^m1^n \mid m < n \ge 0\}.$ $L(A) = ?$ $L(S) = ?$

- $\Sigma = \{0, 1\}$ $\Gamma = \{S, A, B, C\}$ $L(C) = \{ 0^m 1^n \mid m = n \ge 0 \}.$
- $S \rightarrow A \mid B$ $A \rightarrow \emptyset A \mid \emptyset C$ $B \rightarrow B1$ | C1 $C \rightarrow \varepsilon$ | 0C1

 $L(B) = \{0^m1^n \mid m < n \ge 0\}.$ $L(A) = \{ 0^m 1^n \mid m > n \ge 0 \}.$ $L(S) = ?$

- $\Sigma = \{0, 1\}$ $\Gamma = \{S, A, B, C\}$ $L(C) = \{ 0^m 1^n \mid m = n \ge 0 \}.$
- $S \rightarrow A \mid B$ $A \rightarrow \emptyset A \mid \emptyset C$ $B \rightarrow B1$ | C1 $C \rightarrow \varepsilon$ | 0C1
- $L(B) = \{0^m1^n \mid m < n \ge 0\}.$ $L(A) = \{ 0^m 1^n \mid m > n \ge 0 \}.$
- $L(S) = \{ 0^m 1^n \mid m \neq n \geq 0 \}.$

The grammar that generates a CFL is not unique.

 $\Sigma = \{9, 1\}$

How to generate $0*1*$?

$$
S \rightarrow \mathcal{E} \mid \mathcal{Q}S \mid S1
$$
\n
$$
V\mathcal{S}. \qquad \begin{array}{c} S \rightarrow AB \\ A \rightarrow \mathcal{E} \mid \mathcal{Q}A \\ B \rightarrow \mathcal{E} \mid 1B \end{array}
$$

More fun CFLs/CFGs

- Binary palindromes: $S \rightarrow 0S0$ | 1S1 | 0 | 1 | 8
- Binary strings with same number of 0s and 1s: $S \rightarrow \emptyset S1$ | 1S \emptyset | SS | ε (This is HW 0.3) or... $S \rightarrow 0S1S$ | 1S0S | ε
- Balanced strings of parentheses: $S \rightarrow (S)$ | SS | ε or $S \rightarrow (S)S$ | ε

Are all languages context-free?

- **No.** Canonical example: $L = \{0^n1^n0^n \mid n \ge 0\}$ is **not** context-free. (To get a feel for why, try to create a context-free grammar that generates L.)
- Counting argument: The set of possible CFGs over Σ is *countably* infinite, but the set of all languages over Σ is *uncountably* infinite.
- There are also techniques for proving a specific language is not context-free. If curious, search "pumping lemma."

Chomsky Normal Form (CNF)

- Developed by Noam Chomsky in 1959
- A context-free grammar is in CNF if every rule is one of: $A \rightarrow BC$ (A can be S, but neither B nor C can be S) $A \rightarrow a$
- $S \to \varepsilon$ (only if ε is in $L(G)$)

Why are CNF grammars nice/useful?

- Full binary parse trees
	- Easy brute-force check to see if a given string can be generated
- Simple structure makes proofs easier
- Assumed by popular parsing algorithms

Every CFG has a CNF equivalent.

- By "equivalent," we mean "defines the same language."
- Lecture notes: 5.9 CNF Conversion Algorithm
- No more than quadratic size increase

Recap: Learning Objectives

By the end of this lecture, you will be able to:

- Recall the definition of a context-free grammar/language (CFG/CFL).
- Give examples of CFGs/CFLs.
- Derive strings generated by CFGs using parse trees.
- Determine the CFL generated by a CFG.
- Compare/contrast CFLs with regular languages.
- Identify CFGs in Chomsky normal form.

Recap: Learning Objectives

By the end of this lecture, you will be able to:

- Recall the definition of a context-free grammar/language (CFG/CFL).
- Give examples of CFGs/CFLs.
- Derive strings generated by CFGs using parse trees.
- Determine the CFL generated by a CFG.
- Compare/contrast CFLs with regular languages.
- Identify CFGs in Chomsky normal form.

By the end of tomorrow's lab, you will be able to:

• Construct and describe CFGs that generate given languages.