Context-free
languages and grammars

September 19, 2019
CS/ECE 374 A
Ian Ludden

Reminders

« Midterm 1: Monday, Sep 30, 7-9 p.m.
* DRES: reserve ASAP
» Review session(s) next week
 This is the last material that may be covered by the exam

 Homework 3 due next Tuesday

Learning Objectives

By the end of this lecture, you will be able to:

 Recall the definition of a context-free grammar/language (CFG/CFL).
 Give examples of CFGs/CFLs.

» Derive strings generated by CFGs using parse trees.

« Determine the CFL generated by a CFG.

» Compare/contrast CFLs with regular languages.

» Identify CFGs in Chomsky normal form.

Context-free = regular + recursion

Reqular languages

» Sequencing (A * B)
 Branching (A + B)
 Repetition (A*)

Context-free = regular + recursion

Regular Context-free languages
» Sequencing (A * B)
 Branching (A + B)
 Repetition (A*)

« Recursion

All regular languages are context- free.
(Proof in Section 5.5 of lecture notes.)

Motivation

Not all languages are reqgular
« L={o"" | n =0}

Recursive languages occur in nature

- Gentner, T. Q.; Fenn, K. M.; Margoliash, D.; Nusbaum, H. C.
2006)7. ‘Recursive syntactic patfern learning by songbirds.” Nature.
40 (7088): 1204-1207.

Natural Language Processing (NLP)

« Charniak, E. 51997). “Statistical Parsing with a Context-Free
Grammar and Word Statistics.” A4AAI/IAAL

Probabilistic modeling of RNA structures

- Sakakibara Y.; Brown M.; Hughey R.; Mian I. S.; et al. (1994).
“Stochastic context-free grammars for tRNA modelling.” Nucleic
Acids Research. 22 (23):5112-5120.

Formal Definition

* A context-free grammar is a structure defined by:
* A finite set 2 of symbols or terminals

* A finite set I' of non-terminals (disjoint from)

* A finite set R of production rules of the form A -> w, where A is a
non-terminal and w is a string of symbols and non-terminals

« A starting non-terminal, typically S

6=, T, RS)

Example

Context-free grammar for (a subset of) English sentences
Symbols are words, strings are sentences

(sentence noun phrase)(verb phrase){noun phrase)

(noun phrase adjective phrase) (noun)

(adj. phrase article) | (possessive) | (adjective phrase)(adjective)

Ll

(
(
(
(

(verb phrase verb) | (adverb)(verb phrase)

(noun) — dog | trousers | daughter | nose | homework | time lord | pony | - -

(article) — the | a | some | every | that | - -

(possessive (noun phrase)’s | my | your | his | her | --

(adjective) — friendly | furious | moist | green | severed | timey-wimey | little | - - -

(verb) — ate | found | wrote | killed | mangled | saved | invented | broke | - - -

)
)
)
)
)
)
) =
)
)
)

(adverb) — squarely | incompetently | barely | sort of | awkwardly | totally | - - -

Example

2 =49, 1} I Terminals XAY ~rs XWY

r={S,A B C} - Non-terminals (produces immediately)
S ~~>*w

S—>A|B “ (produces eventually)

A — 0A | oC Production rules

B—-B1l |C1 i '|" means ‘or’

C—oegl|oC1

Example

2 =40, 1} S— A
=4S, A, B, C} — 0A
S—A|B — 000C1

A — 0A | oC — 0000C11
B B1 | C1 — 0000c11
C—oegl|oC1 — 000011

Surely there's a more descriptive way to write this derivation...

On the second try, he walked over it.

walked

Old-school \ \
English class i
approach \ \\
[
A
P
0] A
.---”'ﬁ"---.
0] C
Parse tree m
P

https://grammar.yourdictionary.com/sentences/diagramming-sentences.html

Parse trees visualize string derivations.

> = {0, 1}

S
[={S, A B, C} |
A
i
N S S A A 0 A
>—AlB | | N\ N ;T
A — 0A | oC A B O A 0 C T
N o C
B—B1 |Cl . -) &
Coe|oCl . AN | T o C
B 1 C 1 £ O C 1 ;.

{sentence)

d-r""'d-"?_—_
(noun phrase) (verb phrase) (noun phrase)
(adj. phrase) (noun) (adverb) (verb phrase) (adj. phrase) (noun)
T T | | | | |
(adj. phrase) (adjective) time lord barely (verb) (posessive) trousers
e T | | T T
(adj. phrase) (adjective) green mangled (noun phrase) s
| | T T
(posessive) furious (adj. phrase) (noun)
| | |
your (possessive) dog

my

Exercise: Parse trees

> =41, 2, +, X} Activity (2 min.)

=4S, A M, C} 1. Derive 2 + 1 x 1 from this grammar
using a parse tree.

S—-A|IM|1]|2
A—S<+S 2. Compare with neighbor(s).

M—->SxS

Exercise: Parse trees

S S
Z={112I+IX}
r={SIAIMI(:} A M
S>A|M]|1]2 > S S S
+ X

M—-SxS

S S > >

X +
1 1 2 1

2+ (1 x1) =14 (2 +1) x1 =23

Am blg uity 4 (disambiguation)

From Wikipedia, the free encyclopedia

A string w is ambiguous with respect to a
grammar if there is more than one parse
tree for w.

« A grammar G is ambiguous if some string
is ambiguous with respect to G.

A context-free language L is inherently
ambiguous if every context-free grammar
that generates L is ambiguous.

(Contrived examples)

Disambiguating

z = {11 2/ +I X}
=15 AMC}

S—>A|M|1]2
A—>S+S
M—->SxS

—)

Z={1I 2[+I XI (I)}
=15 AM,C}

S—-A|M]|1]|2
A—)(S+S)
M— (Sx5)

No longer ambiguous!

Arithmetic Expressions

* Arithmetic expressions, possibly with redundant parentheses, over the variables X and VY:

E—E+T|T (expressions)
T - TxF|F (terms)
F— (E)|X|Y (factors)

Every Eexpression is a sum of Terms, every Term is a product of Factors, and every Factor
is either a variable or a parenthesized Eexpression.

Reqgular Expressions

e Regular expressions over the alphabet {0, 1} without redundant parentheses

S—>T|T+S (Regular expressions)

T—>F|FT (Terms = summable expressions)
F->0|W|(T+S) |X*| (Y)* (Factors = concatenable expressions)
X—-0lE|0]1 (Directly starrable expressions)

Y > T+S|FeT |X*x|(Y)*x|ZZ (Starrable expressions needing parens)
W—-E|Z (Words = strings)
Z—0|1|ZZ (Non-empty strings)

From grammars to languages

* For non-terminal A, L(A) is the set of all strings generated by A.
 Given context-free grammar G= (2, I, R, S), L(G) = L(S).

* A context-free language is the language generated by a
context-free grammar.

 Often easiest to examine “later” rules first when determining L(G).

What language do you speak?

> ={0, 1} Lemma: L(C) = {e™1" | m = n = 0}.

=4S, A, B, C} Proof (2):
Let n be an arbitrary non-negative integer.

Assume C A~* om1m for all m < n.

S—A|B T

WO cases:
A—>@A|@C *n=0,0"1" =¢, C— g done.
B—B1 |Cl en>1,C— oClL By LH,
C—oe|oC1 oC1 ~>* g(o™11n1)1 = gn1n, done.

Thus L(C) 2 {e™1" | m = n = 0}.

What language do you speak?

> =40, 1} Lemma: L(C) = {e™1" | m = n = 0}.
={S, A B, C} Proof (<):
Fix w in L(C).
S A|B Assume for all x in L(C) with |x| < |w|,
X = @M1™ for some m = 0.
';‘ — ;’i‘ || @C(?l Two cases (first production):
N

«C—¢g, w=¢€=009 done.

C—oel|oC1 « C — 0C1 So w = 0x1 for some x in L(C). By L.H., x
= @M1M for some m = 0.

Sow = 0(em1m)1 = em+tlim+l done.
Thus L(C) € {e™1" | m = n = 0}.

What language do you speak?

> =49, 1} L(C) = {6™1" | m = n = 0}.
[=4S, A, B, C}

S A|B L(B) = ?

A — 0A | oC

B—B1 | C1 L(A) =7

C—oegl|oC1

L(S) = ?

What language do you speak?

> =49, 1} L(C) = {6™1" | m = n = 0}.
[=4S, A, B, C}

S A|B L(B) = {6™1" | m < n > 0.
A — 0A | oC

B—B1 | C1 L(A) =7

C—oegl|oC1

L(S) = ?

What language do you speak?

> =49, 1} L(C) = {6™1" | m = n = 0}.
=4{S A B, C}

S—A|B L(B) = {e™1" | m < n > 0}.
A — 06A | eC
B—B1 |C1 L(A) = {o™1" | m > n > 0}.
C—oe|oC1

L(S) = ?

What language do you speak?

> =49, 1} L(C) = {6™1" | m = n = 0}.
=4{S A B, C}

S—A|B L(B) = {e™1" | m < n > 0}.
A — 06A | eC
B—B1 |C1 L(A) = {o™1" | m > n > 0}.
C—oe|oC1

L(S) = {em1" | m # n = 0}.

The grammar that generates a CFL is not unique.
2 =40, 1}
How to generate 0*1*?

S— AB
S—e|0S|S1 VS. A — €| A

B—-e¢g| 1B

More fun CFLs/CFGs

» Binary palindromes:
S—>0Se|1S1]0]|1]¢

* Binary strings with same number of 0s and 1s:
S—>051]|1S0 |SS | € (This is HW 0.3)
or..S — 051S | 1SeS | €

 Balanced strings of parentheses:
S— (S)|SS]| ¢ or S— (S5)S|¢

Are all languages context-free?

* No. Canonical example: L = {o"1"0" | n = 0} is not context-free.

(To get a feel for why, try to create a context-free grammar that
generates L.)

« Counting argument: The set of possible CFGs over 2 is countably
infinite, but the set of all languages over 2 is uncountably infinite.

» There are also techniques for proving a specific language is not
context-free. If curious, search “pumping lemma.”

Chomsky Normal Form (CNF)

 Developed by Noam Chomsky in 1959

* A context-free grammar is in CNF if every rule is one of:
A — BC (A can be S, but neither B nor C can be S)

A — a3

S—¢e (onlyifeisinL(G))

Why are CNF grammars nice/useful?

* Full binary parse trees
« Easy brute-force check to see if a given string can be generated

« Simple structure makes proofs easier

« Assumed by popular parsing algorithms

Every CFG has a CNF equivalent.

By “equivalent,” we mean “defines the same language.”
* Lecture notes: 5.9 CNF Conversion Algorithm

« No more than quadratic size increase

Recap: Learning Objectives

By the end of this lecture, you will be able to:

 Recall the definition of a context-free grammar/language (CFG/CFL).
 Give examples of CFGs/CFLs.

» Derive strings generated by CFGs using parse trees.

» Determine the CFL generated by a CFG.

« Compare/contrast CFLs with regular languages.

* Identify CFGs in Chomsky normal form.

Recap: Learning Objectives

By the end of this lecture, you will be able to:

 Recall the definition of a context-free grammar/language (CFG/CFL).
 Give examples of CFGs/CFLs.

* Derive strings generated by CFGs using parse trees.

» Determine the CFL generated by a CFG.

» Compare/contrast CFLs with regular languages.

* Identify CFGs in Chomsky normal form.

By the end of tomorrow’s lab, you will be able to:
 Construct and describe CFGs that generate given languages.

