
CS/ECE 374: Algorithms & Models of

Computation, Fall 2019

DFA to Regular Expressions,
Language Transformations
Lecture 7
September 17, 2019

Chandra Chekuri (UIUC) CS/ECE 374 1 Fall 2019 1 / 29

Regular Languages, DFAs, NFAs

Theorem
Languages accepted by DFAs, NFAs, and regular expressions are the
same.

DFAs are special cases of NFAs (trivial)

NFAs accept regular expressions (we saw already, relative easy)

DFAs accept languages accepted by NFAs (subset construction)

Regular expressions for languages accepted by DFAs (sketch
today, again later in the course)

Chandra Chekuri (UIUC) CS/ECE 374 2 Fall 2019 2 / 29

Regular Languages, DFAs, NFAs

Theorem
Languages accepted by DFAs, NFAs, and regular expressions are the
same.

DFAs are special cases of NFAs (trivial)

NFAs accept regular expressions (we saw already, relative easy)

DFAs accept languages accepted by NFAs (subset construction)

Regular expressions for languages accepted by DFAs (sketch
today, again later in the course)

Chandra Chekuri (UIUC) CS/ECE 374 2 Fall 2019 2 / 29

Part I

DFA to Regular Expressions

Chandra Chekuri (UIUC) CS/ECE 374 3 Fall 2019 3 / 29

DFA to Regular Expressions

Theorem
Given a DFA M = (Q,Σ, δ, s,A) there is a regular expression r
such that L(r) = L(M). That is, regular expressions are as powerful
as DFAs (and hence also NFAs).

Simple algorithm but formal proof is technical. See notes.

A different algorithm with an easier formal proof later in the
course.

Chandra Chekuri (UIUC) CS/ECE 374 4 Fall 2019 4 / 29

Stage 0: Input

A B

C

a

b
a

a, b

b

Chandra Chekuri (UIUC) CS/ECE 374 5 Fall 2019 5 / 29

Stage 1: Normalizing

A B

C

a

b
a

a, b

b

2: Normalizing it.

init A B

C AC

ǫ a
b

a

a+ b

b

ǫ

Chandra Chekuri (UIUC) CS/ECE 374 6 Fall 2019 6 / 29

Stage 2: Remove state A

init A B

C AC

ǫ a
b

a

a+ b

b

ǫ

init A B

C AC

ǫ a
b

a

a+ b

b

ǫ

a

b

Chandra Chekuri (UIUC) CS/ECE 374 7 Fall 2019 7 / 29

Stage 4: Redrawn without old edges

init B

C AC

b

a

a+ b

ǫ

a

b

Chandra Chekuri (UIUC) CS/ECE 374 8 Fall 2019 8 / 29

Stage 4: Removing B

init B

C AC

b

a

a+ b

ǫ

a

b

init B

C AC

b

a

a+ b

ǫ

a

b

ab∗a

Chandra Chekuri (UIUC) CS/ECE 374 9 Fall 2019 9 / 29

Stage 5: Redraw

init

C AC

a+ b

ǫ

ab∗a+ b

Chandra Chekuri (UIUC) CS/ECE 374 10 Fall 2019 10 / 29

Stage 6: Removing C

init

C AC

a+ b

ǫ

ab∗a+ b

init

C AC

a+ b

ǫ

ab∗a+ b

(ab∗a+ b)(a+ b)∗ ǫ

Chandra Chekuri (UIUC) CS/ECE 374 11 Fall 2019 11 / 29

Stage 7: Redraw

init AC
(ab∗a+ b)(a+ b)∗

Chandra Chekuri (UIUC) CS/ECE 374 12 Fall 2019 12 / 29

Stage 8: Extract regular expression

init AC
(ab∗a+ b)(a+ b)∗

Thus, the automata is equivalent to the regular expression
(ab∗a + b)(a + b)∗.

States can be eliminated in any order

Can start with NFA

Chandra Chekuri (UIUC) CS/ECE 374 13 Fall 2019 13 / 29

Stage 8: Extract regular expression

init AC
(ab∗a+ b)(a+ b)∗

Thus, the automata is equivalent to the regular expression
(ab∗a + b)(a + b)∗.

States can be eliminated in any order

Can start with NFA

Chandra Chekuri (UIUC) CS/ECE 374 13 Fall 2019 13 / 29

Part II

Closure Properties and Language
Transformations

Chandra Chekuri (UIUC) CS/ECE 374 14 Fall 2019 14 / 29

Closure propeties

Definition
(Informal) A set A is closed under an operation op if applying op to
any elements of A results in an element that also belongs to A.

Examples:

Integers: closed under +, −, ∗, but not division.

Positive integers: closed under + but not under −
Regular languages: closed under union, intersection, Kleene star,
complement, difference, homomorphism, inverse homomorphism,
reverse, . . .

Chandra Chekuri (UIUC) CS/ECE 374 15 Fall 2019 15 / 29

Closure propeties

Definition
(Informal) A set A is closed under an operation op if applying op to
any elements of A results in an element that also belongs to A.

Examples:

Integers: closed under +, −, ∗, but not division.

Positive integers: closed under + but not under −
Regular languages: closed under union, intersection, Kleene star,
complement, difference, homomorphism, inverse homomorphism,
reverse, . . .

Chandra Chekuri (UIUC) CS/ECE 374 15 Fall 2019 15 / 29

Closure properties of Regular Languages

Question: How do we prove that regular languages are closed under
some new operation?

Three broad approaches

Use existing closure properties

L1, L2, L3, L4 regular implies (L1 − L2) ∩ (L̄3 ∪ L4)∗ is regular

Transform regular expressions

Transform DFAs to NFAs — versatile technique and shows the
power of nondeterminism

Chandra Chekuri (UIUC) CS/ECE 374 16 Fall 2019 16 / 29

Closure properties of Regular Languages

Question: How do we prove that regular languages are closed under
some new operation?

Three broad approaches

Use existing closure properties

L1, L2, L3, L4 regular implies (L1 − L2) ∩ (L̄3 ∪ L4)∗ is regular

Transform regular expressions

Transform DFAs to NFAs — versatile technique and shows the
power of nondeterminism

Chandra Chekuri (UIUC) CS/ECE 374 16 Fall 2019 16 / 29

Closure properties of Regular Languages

Question: How do we prove that regular languages are closed under
some new operation?

Three broad approaches

Use existing closure properties

L1, L2, L3, L4 regular implies (L1 − L2) ∩ (L̄3 ∪ L4)∗ is regular

Transform regular expressions

Transform DFAs to NFAs — versatile technique and shows the
power of nondeterminism

Chandra Chekuri (UIUC) CS/ECE 374 16 Fall 2019 16 / 29

Closure properties of Regular Languages

Question: How do we prove that regular languages are closed under
some new operation?

Three broad approaches

Use existing closure properties

L1, L2, L3, L4 regular implies (L1 − L2) ∩ (L̄3 ∪ L4)∗ is regular

Transform regular expressions

Transform DFAs to NFAs — versatile technique and shows the
power of nondeterminism

Chandra Chekuri (UIUC) CS/ECE 374 16 Fall 2019 16 / 29

Closure properties of Regular Languages

Question: How do we prove that regular languages are closed under
some new operation?

Three broad approaches

Use existing closure properties

L1, L2, L3, L4 regular implies (L1 − L2) ∩ (L̄3 ∪ L4)∗ is regular

Transform regular expressions

Transform DFAs to NFAs — versatile technique and shows the
power of nondeterminism

Chandra Chekuri (UIUC) CS/ECE 374 16 Fall 2019 16 / 29

Example: REVERSE

Given string w , wR is reverse of w .
For a language L define LR = {wR | w ∈ L} as reverse of L.

Theorem
LR is regular if L is regular.

Infinitely many regular languages!

Proof technique:

take some finite representation of L such as regular expression r
Describe an algorithm A that takes r as input and outputs a
regular expression r ′ such that L(r ′) = (L(r))R .

Come up with A and prove its correctness.

Chandra Chekuri (UIUC) CS/ECE 374 17 Fall 2019 17 / 29

Example: REVERSE

Given string w , wR is reverse of w .
For a language L define LR = {wR | w ∈ L} as reverse of L.

Theorem
LR is regular if L is regular.

Infinitely many regular languages!

Proof technique:

take some finite representation of L such as regular expression r
Describe an algorithm A that takes r as input and outputs a
regular expression r ′ such that L(r ′) = (L(r))R .

Come up with A and prove its correctness.

Chandra Chekuri (UIUC) CS/ECE 374 17 Fall 2019 17 / 29

Example: REVERSE

Given string w , wR is reverse of w .
For a language L define LR = {wR | w ∈ L} as reverse of L.

Theorem
LR is regular if L is regular.

Infinitely many regular languages!

Proof technique:

take some finite representation of L such as regular expression r
Describe an algorithm A that takes r as input and outputs a
regular expression r ′ such that L(r ′) = (L(r))R .

Come up with A and prove its correctness.

Chandra Chekuri (UIUC) CS/ECE 374 17 Fall 2019 17 / 29

Example: REVERSE

Given string w , wR is reverse of w .
For a language L define LR = {wR | w ∈ L} as reverse of L.

Theorem
LR is regular if L is regular.

Infinitely many regular languages!

Proof technique:

take some finite representation of L such as regular expression r
Describe an algorithm A that takes r as input and outputs a
regular expression r ′ such that L(r ′) = (L(r))R .

Come up with A and prove its correctness.

Chandra Chekuri (UIUC) CS/ECE 374 17 Fall 2019 17 / 29

REVERSE via regular expressions

Suppose r is a regular expression for L. How do we create a regular
expression r ′ for LR?

Inductively based on recursive definition of r .

r = ∅ or r = a for some a ∈ Σ

r = r1 + r2

r = r1 · r2

r = (r1)∗

Chandra Chekuri (UIUC) CS/ECE 374 18 Fall 2019 18 / 29

REVERSE via regular expressions

Suppose r is a regular expression for L. How do we create a regular
expression r ′ for LR? Inductively based on recursive definition of r .

r = ∅ or r = a for some a ∈ Σ

r = r1 + r2

r = r1 · r2

r = (r1)∗

Chandra Chekuri (UIUC) CS/ECE 374 18 Fall 2019 18 / 29

REVERSE via regular expressions

r = ∅ or r = a for some a ∈ Σ
r ′ = r

r = r1 + r2. If r ′1, r
′
2 are reg expressions for (L(r1))R, (L(r2))R

then r ′ = r ′1 + r ′2
r = r1 · r2. If r ′1, r

′
2 are reg expressions for (L(r1))R, (L(r2))R

then r ′ = r ′2 · r ′1
r = (r1)∗. If r ′1 is reg expressions for (L(r1))R then r ′ = (r ′1)∗

r = (0 + 10)∗(001 + 01)1 then r ′ = 1(100 + 10)(0 + 01)∗

Proof for each identity: tedious case analysis based on definitions of
union, concatenation, Kleene star and reverse.

Chandra Chekuri (UIUC) CS/ECE 374 19 Fall 2019 19 / 29

REVERSE via regular expressions

r = ∅ or r = a for some a ∈ Σ
r ′ = r
r = r1 + r2. If r ′1, r

′
2 are reg expressions for (L(r1))R, (L(r2))R

then r ′ =

r ′1 + r ′2
r = r1 · r2. If r ′1, r

′
2 are reg expressions for (L(r1))R, (L(r2))R

then r ′ = r ′2 · r ′1
r = (r1)∗. If r ′1 is reg expressions for (L(r1))R then r ′ = (r ′1)∗

r = (0 + 10)∗(001 + 01)1 then r ′ = 1(100 + 10)(0 + 01)∗

Proof for each identity: tedious case analysis based on definitions of
union, concatenation, Kleene star and reverse.

Chandra Chekuri (UIUC) CS/ECE 374 19 Fall 2019 19 / 29

REVERSE via regular expressions

r = ∅ or r = a for some a ∈ Σ
r ′ = r
r = r1 + r2. If r ′1, r

′
2 are reg expressions for (L(r1))R, (L(r2))R

then r ′ = r ′1 + r ′2

r = r1 · r2. If r ′1, r
′
2 are reg expressions for (L(r1))R, (L(r2))R

then r ′ = r ′2 · r ′1
r = (r1)∗. If r ′1 is reg expressions for (L(r1))R then r ′ = (r ′1)∗

r = (0 + 10)∗(001 + 01)1 then r ′ = 1(100 + 10)(0 + 01)∗

Proof for each identity: tedious case analysis based on definitions of
union, concatenation, Kleene star and reverse.

Chandra Chekuri (UIUC) CS/ECE 374 19 Fall 2019 19 / 29

REVERSE via regular expressions

r = ∅ or r = a for some a ∈ Σ
r ′ = r
r = r1 + r2. If r ′1, r

′
2 are reg expressions for (L(r1))R, (L(r2))R

then r ′ = r ′1 + r ′2
r = r1 · r2. If r ′1, r

′
2 are reg expressions for (L(r1))R, (L(r2))R

then r ′ =

r ′2 · r ′1
r = (r1)∗. If r ′1 is reg expressions for (L(r1))R then r ′ = (r ′1)∗

r = (0 + 10)∗(001 + 01)1 then r ′ = 1(100 + 10)(0 + 01)∗

Proof for each identity: tedious case analysis based on definitions of
union, concatenation, Kleene star and reverse.

Chandra Chekuri (UIUC) CS/ECE 374 19 Fall 2019 19 / 29

REVERSE via regular expressions

r = ∅ or r = a for some a ∈ Σ
r ′ = r
r = r1 + r2. If r ′1, r

′
2 are reg expressions for (L(r1))R, (L(r2))R

then r ′ = r ′1 + r ′2
r = r1 · r2. If r ′1, r

′
2 are reg expressions for (L(r1))R, (L(r2))R

then r ′ = r ′2 · r ′1

r = (r1)∗. If r ′1 is reg expressions for (L(r1))R then r ′ = (r ′1)∗

r = (0 + 10)∗(001 + 01)1 then r ′ = 1(100 + 10)(0 + 01)∗

Proof for each identity: tedious case analysis based on definitions of
union, concatenation, Kleene star and reverse.

Chandra Chekuri (UIUC) CS/ECE 374 19 Fall 2019 19 / 29

REVERSE via regular expressions

r = ∅ or r = a for some a ∈ Σ
r ′ = r
r = r1 + r2. If r ′1, r

′
2 are reg expressions for (L(r1))R, (L(r2))R

then r ′ = r ′1 + r ′2
r = r1 · r2. If r ′1, r

′
2 are reg expressions for (L(r1))R, (L(r2))R

then r ′ = r ′2 · r ′1
r = (r1)∗. If r ′1 is reg expressions for (L(r1))R then r ′ = (r ′1)∗

r = (0 + 10)∗(001 + 01)1 then r ′ = 1(100 + 10)(0 + 01)∗

Proof for each identity: tedious case analysis based on definitions of
union, concatenation, Kleene star and reverse.

Chandra Chekuri (UIUC) CS/ECE 374 19 Fall 2019 19 / 29

REVERSE via regular expressions

r = ∅ or r = a for some a ∈ Σ
r ′ = r
r = r1 + r2. If r ′1, r

′
2 are reg expressions for (L(r1))R, (L(r2))R

then r ′ = r ′1 + r ′2
r = r1 · r2. If r ′1, r

′
2 are reg expressions for (L(r1))R, (L(r2))R

then r ′ = r ′2 · r ′1
r = (r1)∗. If r ′1 is reg expressions for (L(r1))R then r ′ = (r ′1)∗

r = (0 + 10)∗(001 + 01)1 then r ′ =

1(100 + 10)(0 + 01)∗

Proof for each identity: tedious case analysis based on definitions of
union, concatenation, Kleene star and reverse.

Chandra Chekuri (UIUC) CS/ECE 374 19 Fall 2019 19 / 29

REVERSE via regular expressions

r = ∅ or r = a for some a ∈ Σ
r ′ = r
r = r1 + r2. If r ′1, r

′
2 are reg expressions for (L(r1))R, (L(r2))R

then r ′ = r ′1 + r ′2
r = r1 · r2. If r ′1, r

′
2 are reg expressions for (L(r1))R, (L(r2))R

then r ′ = r ′2 · r ′1
r = (r1)∗. If r ′1 is reg expressions for (L(r1))R then r ′ = (r ′1)∗

r = (0 + 10)∗(001 + 01)1 then r ′ = 1(100 + 10)(0 + 01)∗

Proof for each identity: tedious case analysis based on definitions of
union, concatenation, Kleene star and reverse.

Chandra Chekuri (UIUC) CS/ECE 374 19 Fall 2019 19 / 29

REVERSE via regular expressions

r = ∅ or r = a for some a ∈ Σ
r ′ = r
r = r1 + r2. If r ′1, r

′
2 are reg expressions for (L(r1))R, (L(r2))R

then r ′ = r ′1 + r ′2
r = r1 · r2. If r ′1, r

′
2 are reg expressions for (L(r1))R, (L(r2))R

then r ′ = r ′2 · r ′1
r = (r1)∗. If r ′1 is reg expressions for (L(r1))R then r ′ = (r ′1)∗

r = (0 + 10)∗(001 + 01)1 then r ′ = 1(100 + 10)(0 + 01)∗

Proof for each identity: tedious case analysis based on definitions of
union, concatenation, Kleene star and reverse.

Chandra Chekuri (UIUC) CS/ECE 374 19 Fall 2019 19 / 29

REVERSE via machine transformation

Given DFA M = (Q,Σ, δ, s,A) want NFA N such that
L(N) = (L(M))R .

N should accept wR iff M accepts w

M accepts w iff δ∗M(s,w) ∈ A

Idea: N reverses transitions of M and starts at a final state of M .

Which one? Non-deterministically guesses and accepts if it reaches s.

Chandra Chekuri (UIUC) CS/ECE 374 20 Fall 2019 20 / 29

REVERSE via machine transformation

Given DFA M = (Q,Σ, δ, s,A) want NFA N such that
L(N) = (L(M))R .

N should accept wR iff M accepts w

M accepts w iff δ∗M(s,w) ∈ A

Idea: N reverses transitions of M and starts at a final state of M .
Which one?

Non-deterministically guesses and accepts if it reaches s.

Chandra Chekuri (UIUC) CS/ECE 374 20 Fall 2019 20 / 29

REVERSE via machine transformation

Given DFA M = (Q,Σ, δ, s,A) want NFA N such that
L(N) = (L(M))R .

N should accept wR iff M accepts w

M accepts w iff δ∗M(s,w) ∈ A

Idea: N reverses transitions of M and starts at a final state of M .
Which one? Non-deterministically guesses and accepts if it reaches s.

Chandra Chekuri (UIUC) CS/ECE 374 20 Fall 2019 20 / 29

REVERSE via machine transformation

q1

q2

q3

q4

q1

q2

q3

q4

s′

ε

ε

Caveat: Reversing transitions may create an NFA.
Chandra Chekuri (UIUC) CS/ECE 374 21 Fall 2019 21 / 29

REVERSE via machine transformation

Models of Computation Lecture �: Nondeterministic Automata [Sp’��]

• Suppose R = A+ B. The inductive hypothesis implies that there are regular expressions
A0 and B0 such that L(A0) = L(A)R and L(B0) = L(B)R. Let R0 = A0 + B0. Then L(R0) =
L(A0)[L(B0) = L(A)R [L(B)R = (L(A)[L(B))R = LR.

• Suppose R = A • B. The inductive hypothesis implies that there are regular expressions
A0 and B0 such that L(A0) = L(A)R and L(B0) = L(B)R. Let R0 = B0 • A0. Then L(R0) =
L(B0) • L(A0) = L(B)R • L(A)R = (L(A) • L(B))R = LR.

• Finally, suppose R= A⇤. The inductive hypothesis implies that there is a regular expression A0

such that L(A0) = L(A)R. Let R0 = (A0)⇤. Then L(R0) = L(A0)⇤ = (L(A)R)⇤ = (L(A)⇤)R = LR.

In all cases, we have constructed a regular expression R0 such that L(R0) = LR. We conclude that
LR is regular. É

Careful readers may be unsatisfied with the previous proof, because it assumes several
“obvious” properties of string and language reversal. Specifically, for all strings x and y and all
languages L and L0, we assumed the following:

• (x • y)R = yR • xR

• (L · L0)R = (L0)R · LR.

• (L [L0)R = LR [(L0)R.

• (L⇤)R = (LR)⇤.

All of these claims are all easy to prove by inductive definition-chasing.

Proof (DFA to NFA): Let M = (⌃,Q, s, A,�) be an arbitrary DFA that accepts L. We construct
an NFA MR = (⌃,QR, sR, AR,�R) with "-transitions that accepts LR, intuitively by reversing every
transition in M , and swapping the roles of the start state and the accepting states. Because
M does not have a unique accepting state, we need to introduce a special start state sR, with
"-transitions to each accepting state in M . These are the only "-transitions in MR.

QR =Q [{sR}
AR = {s}

�R(sR,") = A

�R(sR, a) = ? for all a 2 ⌃
�R(q,") = ? for all q 2Q

�R(q, a) =
�

p
�� q 2 �(p, a)

for all q 2Q and a 2 ⌃

Routine inductive definition-chasing now implies that the reversal of any sequence q0�q1� · · ·�q`
of transitions in M is a valid sequence q`�q`�1� · · ·�q0 of transitions in MR. Because the
transitions retain their labels (but reverse directions), it follows that M accepts any string w if
and only if MR accepts wR.

We conclude that the NFA MR accepts LR, so LR must be regular. É

Lemma �.�. For any regular language L, the language half(L) := {w | ww 2 L} is also regular.

Proof: Let M = (⌃,Q, s, A,�) be an arbitrary DFA that accepts L.
Intuitively, we construct an NFA M 0 that reads its input string w and simulates the original

DFA M reading the input string ww. Our overall strategy has three parts:

��

Chandra Chekuri (UIUC) CS/ECE 374 22 Fall 2019 22 / 29

A more complicated example: CYCLE

CYCLE(L) = {yx | x, y ∈ Σ∗, xy ∈ L}

Theorem
CYCLE(L) is regular if L is regular.

Example: L = {abc, 374a}

CYCLE(L) =

Chandra Chekuri (UIUC) CS/ECE 374 23 Fall 2019 23 / 29

A more complicated example: CYCLE

CYCLE(L) = {yx | x, y ∈ Σ∗, xy ∈ L}

Theorem
CYCLE(L) is regular if L is regular.

Example: L = {abc, 374a}

CYCLE(L) =

Chandra Chekuri (UIUC) CS/ECE 374 23 Fall 2019 23 / 29

A more complicated example: CYCLE

CYCLE(L) = {yx | x, y ∈ Σ∗, xy ∈ L}

Theorem
CYCLE(L) is regular if L is regular.

Given DFA M for L create NFA N that accepts CYCLE(L).

N is a finite state machine, cannot know split of w into xy and
yet has to simulate M on x and y .

Exploit fact that M is itself a finite state machine. N only needs
to “know” the state δ∗M(s, x) and there are only finite number
of states in M

Chandra Chekuri (UIUC) CS/ECE 374 24 Fall 2019 24 / 29

A more complicated example: CYCLE

CYCLE(L) = {yx | x, y ∈ Σ∗, xy ∈ L}

Theorem
CYCLE(L) is regular if L is regular.

Given DFA M for L create NFA N that accepts CYCLE(L).

N is a finite state machine, cannot know split of w into xy and
yet has to simulate M on x and y .

Exploit fact that M is itself a finite state machine. N only needs
to “know” the state δ∗M(s, x) and there are only finite number
of states in M

Chandra Chekuri (UIUC) CS/ECE 374 24 Fall 2019 24 / 29

Construction for CYCLE

Let w = xy and w ′ = yx .

N guesses state q = δ∗M(s, x) and simulates M on w ′ with
start state q.

N guesses when y ends (at that point M must be in an accept
state) and transitions to a copy of M to simulate M on
remaining part of w ′ (which is x)

N accepts w ′ if after second copy of M on x it ends up in the
guessed state q

Chandra Chekuri (UIUC) CS/ECE 374 25 Fall 2019 25 / 29

Construction for CYCLE

q1

q2

q3

q4

q1

q2

q3

q4

q1

q2

q3

q4

ε

ε

q1

q2

q3

q4

q1

q2

q3

q4

ε

ε

q1

q2

q3

q4

q1

q2

q3

q4

ε

ε

q1

q2

q3

q4

q1

q2

q3

q4

ε

ε

s′

ε

ε

ε

ε

Chandra Chekuri (UIUC) CS/ECE 374 26 Fall 2019 26 / 29

Proving correctness

Exercise: Write down formal description of N in tuple notation
starting with M = (Q,Σ, δ, s,A).

Need to argue that L(N) = CYCLE(L(M))

If w = xy accepted by M then argue that yx is accepted by N
If N accepts w ′ then argue that w ′ = yx such that xy
accepted by M .

Chandra Chekuri (UIUC) CS/ECE 374 27 Fall 2019 27 / 29

Application of closure properties to non-regularity

L1 = {0n1n | n ≥ 0}
L2 = {w ∈ {0, 1}∗ | #0(w) = #1(w)}
L3 = {0i1j | i 6= j}

L1 is not regular. Can we use that fact to prove L2 and L2 are not
regular without going through the fooling set argument?

L1 = L2 ∩ 0∗1∗ hence if L2 is regular then L1 is regular, a
contradiction.

L1 = L̄3 ∩ 0∗1∗ hence if L3 is regular then L1 is regular, a
contradiction

Chandra Chekuri (UIUC) CS/ECE 374 28 Fall 2019 28 / 29

Application of closure properties to non-regularity

L1 = {0n1n | n ≥ 0}
L2 = {w ∈ {0, 1}∗ | #0(w) = #1(w)}
L3 = {0i1j | i 6= j}

L1 is not regular. Can we use that fact to prove L2 and L2 are not
regular without going through the fooling set argument?

L1 = L2 ∩ 0∗1∗ hence if L2 is regular then L1 is regular, a
contradiction.

L1 = L̄3 ∩ 0∗1∗ hence if L3 is regular then L1 is regular, a
contradiction

Chandra Chekuri (UIUC) CS/ECE 374 28 Fall 2019 28 / 29

Application of closure properties to non-regularity

L1 = {0n1n | n ≥ 0}
L2 = {w ∈ {0, 1}∗ | #0(w) = #1(w)}
L3 = {0i1j | i 6= j}

L1 is not regular. Can we use that fact to prove L2 and L2 are not
regular without going through the fooling set argument?

L1 = L2 ∩ 0∗1∗ hence if L2 is regular then L1 is regular, a
contradiction.

L1 = L̄3 ∩ 0∗1∗ hence if L3 is regular then L1 is regular, a
contradiction

Chandra Chekuri (UIUC) CS/ECE 374 28 Fall 2019 28 / 29

Application of closure properties to non-regularity

L1 = {0n1n | n ≥ 0}
L2 = {w ∈ {0, 1}∗ | #0(w) = #1(w)}
L3 = {0i1j | i 6= j}

L1 is not regular. Can we use that fact to prove L2 and L2 are not
regular without going through the fooling set argument?

L1 = L2 ∩ 0∗1∗ hence if L2 is regular then L1 is regular, a
contradiction.

L1 = L̄3 ∩ 0∗1∗ hence if L3 is regular then L1 is regular, a
contradiction

Chandra Chekuri (UIUC) CS/ECE 374 28 Fall 2019 28 / 29

Jeff’s reminder about exam

Following topics not on the upcoming midterm exam

Transforming DFA/NFA into regular expressions (covered today)

Minimizing DFA

Chandra Chekuri (UIUC) CS/ECE 374 29 Fall 2019 29 / 29

	DFA to Regular Expressions
	Closure Properties and Language Transformations

