CS/ECE 374: Algorithms & Models of Computation, Fall 2019

# **DFA to Regular Expressions,** Language Transformations

Lecture 7 September 17, 2019

# Regular Languages, DFAs, NFAs

#### Theorem

Languages accepted by DFAs, NFAs, and regular expressions are the same.

### Regular Languages, DFAs, NFAs

#### Theorem

Languages accepted by DFAs, NFAs, and regular expressions are the same.

- DFAs are special cases of NFAs (trivial)
- NFAs accept regular expressions (we saw already, relative easy)
- DFAs accept languages accepted by NFAs (subset construction)
- Regular expressions for languages accepted by DFAs (sketch today, again later in the course)

# Part I

# DFA to Regular Expressions

### DFA to Regular Expressions

#### Theorem

Given a DFA  $M = (Q, \Sigma, \delta, s, A)$  there is a regular expression r such that L(r) = L(M). That is, regular expressions are as powerful as DFAs (and hence also NFAs).

- Simple algorithm but formal proof is technical. See notes.
- A different algorithm with an easier formal proof later in the course.

# Stage 0: Input



# Stage 1: Normalizing



2: Normalizing it.



# Stage 2: Remove state A



# Stage 4: Redrawn without old edges



# Stage 4: Removing B



### Stage 5: Redraw



### Stage 6: Removing C



# Stage 7: Redraw

$$\rightarrow (init) \quad (ab^*a + b)(a + b)^* \rightarrow (AC)$$

### Stage 8: Extract regular expression

$$\rightarrow$$
 (init) (ab\*a + b)(a + b)\* (AC)

Thus, the automata is equivalent to the regular expression  $(ab^*a + b)(a + b)^*$ .

### Stage 8: Extract regular expression

$$\rightarrow$$
 (init) (ab\*a + b)(a + b)\* (AC)

Thus, the automata is equivalent to the regular expression  $(ab^*a + b)(a + b)^*$ .

- States can be eliminated in any order
- Can start with NFA

# Part II

# Closure Properties and Language Transformations

### Closure propeties

#### Definition

(Informal) A set A is **closed** under an operation **op** if applying **op** to any elements of A results in an element that also belongs to A.

### Closure propeties

#### Definition

(Informal) A set A is **closed** under an operation **op** if applying **op** to any elements of A results in an element that also belongs to A.

#### Examples:

- *Integers:* closed under +, -, \*, but not division.
- Positive integers: closed under + but not under -
- *Regular languages:* closed under union, intersection, Kleene star, complement, difference, homomorphism, inverse homomorphism, reverse, ...

**Question:** How do we prove that regular languages are closed under some new operation?

**Question:** How do we prove that regular languages are closed under some new operation?

Three broad approaches

• Use existing closure properties

**Question:** How do we prove that regular languages are closed under some new operation?

Three broad approaches

- Use existing closure properties
  - $L_1, L_2, L_3, L_4$  regular implies  $(L_1 L_2) \cap (\bar{L_3} \cup L_4)^*$  is regular

**Question:** How do we prove that regular languages are closed under some new operation?

Three broad approaches

- Use existing closure properties
  - $L_1, L_2, L_3, L_4$  regular implies  $(L_1 L_2) \cap (\overline{L_3} \cup L_4)^*$  is regular

16

• Transform regular expressions

**Question:** How do we prove that regular languages are closed under some new operation?

Three broad approaches

- Use existing closure properties
  - $L_1, L_2, L_3, L_4$  regular implies  $(L_1 L_2) \cap (\overline{L_3} \cup L_4)^*$  is regular

- Transform regular expressions
- Transform DFAs to NFAs versatile technique and shows the power of nondeterminism

Given string w,  $w^R$  is reverse of w. For a language L define  $L^R = \{w^R \mid w \in L\}$  as reverse of L.

Given string w,  $w^R$  is reverse of w. For a language L define  $L^R = \{w^R \mid w \in L\}$  as reverse of L.

#### Theorem

 $L^R$  is regular if L is regular.

Given string w,  $w^R$  is reverse of w. For a language L define  $L^R = \{w^R \mid w \in L\}$  as reverse of L.

#### Theorem

 $L^R$  is regular if L is regular.

Infinitely many regular languages!

Given string w,  $w^R$  is reverse of w. For a language L define  $L^R = \{w^R \mid w \in L\}$  as reverse of L.

#### Theorem

 $L^R$  is regular if L is regular.

Infinitely many regular languages!

Proof technique:

- take some finite representation of L such as regular expression r
- Describe an algorithm A that takes r as input and outputs a regular expression r' such that  $L(r') = (L(r))^R$ .
- Come up with **A** and prove its correctness.

Suppose r is a regular expression for L. How do we create a regular expression r' for  $L^R$ ?

$$(00 + 00)^{*} 100 + 000 100 + 000 (000)^{*} (000)^{*} (000)^{*} (000)^{*} (000)^{*} (000)^{*} (000)^{*} (000)^{*} (000)^{*} (000)^{*} (000)^{*} (000)^{*} (000)^{*} (000)^{*} (000)^{*} (000)^{*} (000)^{*} (000)^{*} (000)^{*} (000)^{*} (000)^{*} (000)^{*} (000)^{*} (000)^{*} (000)^{*} (000)^{*} (000)^{*} (000)^{*} (000)^{*} (000)^{*} (000)^{*} (000)^{*} (000)^{*} (000)^{*} (000)^{*} (000)^{*} (000)^{*} (000)^{*} (000)^{*} (000)^{*} (000)^{*} (000)^{*} (000)^{*} (000)^{*} (000)^{*} (000)^{*} (000)^{*} (000)^{*} (000)^{*} (000)^{*} (000)^{*} (000)^{*} (000)^{*} (000)^{*} (000)^{*} (000)^{*} (000)^{*} (000)^{*} (000)^{*} (000)^{*} (000)^{*} (000)^{*} (000)^{*} (000)^{*} (000)^{*} (000)^{*} (000)^{*} (000)^{*} (000)^{*} (000)^{*} (000)^{*} (000)^{*} (000)^{*} (000)^{*} (000)^{*} (000)^{*} (000)^{*} (000)^{*} (000)^{*} (000)^{*} (000)^{*} (000)^{*} (000)^{*} (000)^{*} (000)^{*} (000)^{*} (000)^{*} (000)^{*} (000)^{*} (000)^{*} (000)^{*} (000)^{*} (000)^{*} (000)^{*} (000)^{*} (000)^{*} (000)^{*} (000)^{*} (000)^{*} (000)^{*} (000)^{*} (000)^{*} (000)^{*} (000)^{*} (000)^{*} (000)^{*} (000)^{*} (000)^{*} (000)^{*} (000)^{*} (000)^{*} (000)^{*} (000)^{*} (000)^{*} (000)^{*} (000)^{*} (000)^{*} (000)^{*} (000)^{*} (000)^{*} (000)^{*} (000)^{*} (000)^{*} (000)^{*} (000)^{*} (000)^{*} (000)^{*} (000)^{*} (000)^{*} (000)^{*} (000)^{*} (000)^{*} (000)^{*} (000)^{*} (000)^{*} (000)^{*} (000)^{*} (000)^{*} (000)^{*} (000)^{*} (000)^{*} (000)^{*} (000)^{*} (000)^{*} (000)^{*} (000)^{*} (000)^{*} (000)^{*} (000)^{*} (000)^{*} (000)^{*} (000)^{*} (000)^{*} (000)^{*} (000)^{*} (000)^{*} (000)^{*} (000)^{*} (000)^{*} (000)^{*} (000)^{*} (000)^{*} (000)^{*} (000)^{*} (000)^{*} (000)^{*} (000)^{*} (000)^{*} (000)^{*} (000)^{*} (000)^{*} (000)^{*} (000)^{*} (000)^{*} (000)^{*} (000)^{*} (000)^{*} (000)^{*} (000)^{*} (000)^{*} (000)^{*} (000)^{*} (000)^{*} (000)^{*} (000)^{*} (000)^{*} (000)^{*} (000)^{*} (000)^{*} (000)^{*} (000)^{*} (000)^{*} (000)^{*} (000)^{*} (000)^{*} (000)^{*} (000)^{*} (000)^{*} (000)^{*} (000)^{*} (000)^{*$$

Suppose r is a regular expression for L. How do we create a regular expression r' for  $L^R$ ? Inductively based on recursive definition of r.

- $r = \emptyset$  or r = a for some  $a \in \Sigma$
- $r = r_1 + r_2$
- $r = r_1 \cdot r_2$
- $r = (r_1)^*$

• 
$$r = \emptyset$$
 or  $r = a$  for some  $a \in \Sigma$   
 $r' = r$ 

• 
$$r = \emptyset$$
 or  $r = a$  for some  $a \in \Sigma$   
 $r' = r$ 

•  $r = r_1 + r_2$ . If  $r'_1, r'_2$  are reg expressions for  $(L(r_1))^R, (L(r_2))^R$ then r' =

• 
$$r = \emptyset$$
 or  $r = a$  for some  $a \in \Sigma$   
 $r' = r$ 

•  $r = r_1 + r_2$ . If  $r'_1, r'_2$  are reg expressions for  $(L(r_1))^R, (L(r_2))^R$ then  $r' = r'_1 + r'_2$ 

• 
$$r = \emptyset$$
 or  $r = a$  for some  $a \in \Sigma$   
 $r' = r$ 

- $r = r_1 + r_2$ . If  $r'_1, r'_2$  are reg expressions for  $(L(r_1))^R, (L(r_2))^R$ then  $r' = r'_1 + r'_2$
- $r = r_1 \cdot r_2$ . If  $r'_1, r'_2$  are reg expressions for  $(L(r_1))^R, (L(r_2))^R$ then r' =

• 
$$r = \emptyset$$
 or  $r = a$  for some  $a \in \Sigma$   
 $r' = r$ 

- $r = r_1 + r_2$ . If  $r'_1, r'_2$  are reg expressions for  $(L(r_1))^R, (L(r_2))^R$ then  $r' = r'_1 + r'_2$
- $r = r_1 \cdot r_2$ . If  $r'_1, r'_2$  are reg expressions for  $(L(r_1))^R, (L(r_2))^R$ then  $r' = r'_2 \cdot r'_1$ If y a stigs Mun  $(u v)^R = v^R u^R$

• 
$$r = \emptyset$$
 or  $r = a$  for some  $a \in \Sigma$   
 $r' = r$ 

- $r = r_1 + r_2$ . If  $r'_1, r'_2$  are reg expressions for  $(L(r_1))^R, (L(r_2))^R$ then  $r' = r'_1 + r'_2$
- $r = r_1 \cdot r_2$ . If  $r'_1, r'_2$  are reg expressions for  $(L(r_1))^R, (L(r_2))^R$ then  $r' = r'_2 \cdot r'_1$

•  $r = (r_1)^*$ . If  $r'_1$  is reg expressions for  $(L(r_1))^R$  then  $r' = (r'_1)^*$ 

$$R_{1}^{*} = \left( \Sigma + R_{1} + R_{1}R_{1} + A_{1}R_{2}R_{1} + \cdots \right)$$
  
 $\Sigma + R_{1}^{'} + R_{1}^{'}R_{1}^{'} + R_{2}R_{1}^{'}R_{1}^{'} + \cdots = -$   
 $= (R_{1}^{'})^{*}$ 

• 
$$r = \emptyset$$
 or  $r = a$  for some  $a \in \Sigma$   
 $r' = r$ 

- $r = r_1 + r_2$ . If  $r'_1, r'_2$  are reg expressions for  $(L(r_1))^R, (L(r_2))^R$ then  $r' = r'_1 + r'_2$
- $r = r_1 \cdot r_2$ . If  $r'_1, r'_2$  are reg expressions for  $(L(r_1))^R, (L(r_2))^R$ then  $r' = r'_2 \cdot r'_1$
- $r = (r_1)^*$ . If  $r'_1$  is reg expressions for  $(L(r_1))^R$  then  $r' = (r'_1)^*$

 $r = (0 + 10)^*(001 + 01)1$  then r' =

# **REVERSE** via regular expressions

• 
$$r = \emptyset$$
 or  $r = a$  for some  $a \in \Sigma$   
 $r' = r$ 

- $r = r_1 + r_2$ . If  $r'_1, r'_2$  are reg expressions for  $(L(r_1))^R, (L(r_2))^R$ then  $r' = r'_1 + r'_2$
- $r = r_1 \cdot r_2$ . If  $r'_1, r'_2$  are reg expressions for  $(L(r_1))^R, (L(r_2))^R$ then  $r' = r'_2 \cdot r'_1$
- $r = (r_1)^*$ . If  $r'_1$  is reg expressions for  $(L(r_1))^R$  then  $r' = (r'_1)^*$

 $r = (0 + 10)^*(001 + 01)1$  then  $r' = 1(100 + 10)(0 + 01)^*$ 

# **REVERSE** via regular expressions

• 
$$r = \emptyset$$
 or  $r = a$  for some  $a \in \Sigma$   
 $r' = r$ 

- $r = r_1 + r_2$ . If  $r'_1, r'_2$  are reg expressions for  $(L(r_1))^R, (L(r_2))^R$ then  $r' = r'_1 + r'_2$
- $r = r_1 \cdot r_2$ . If  $r'_1, r'_2$  are reg expressions for  $(L(r_1))^R, (L(r_2))^R$ then  $r' = r'_2 \cdot r'_1$
- $r = (r_1)^*$ . If  $r'_1$  is reg expressions for  $(L(r_1))^R$  then  $r' = (r'_1)^*$

 $r = (0 + 10)^*(001 + 01)1$  then  $r' = 1(100 + 10)(0 + 01)^*$ 

Proof for each identity: tedious case analysis based on definitions of union, concatenation, Kleene star and reverse.

Given DFA  $M = (Q, \Sigma, \delta, s, A)$  want NFA N such that  $L(N) = (L(M))^{R}$ .

N should accept  $w^R$  iff M accepts w

*M* accepts *w* iff  $\delta^*_M(s, w) \in A$ 

Idea: N reverses transitions of M and starts at a final state of M.

Given DFA  $M = (Q, \Sigma, \delta, s, A)$  want NFA N such that  $L(N) = (L(M))^{R}$ .

N should accept  $w^R$  iff M accepts w

*M* accepts *w* iff  $\delta^*_M(s, w) \in A$ 

**Idea:** N reverses transitions of M and starts at a final state of M. Which one?

Given DFA  $M = (Q, \Sigma, \delta, s, A)$  want NFA N such that  $L(N) = (L(M))^{R}$ .

N should accept  $w^R$  iff M accepts w

*M* accepts *w* iff  $\delta^*_M(s, w) \in A$ 

**Idea:** N reverses transitions of M and starts at a final state of M. Which one? Non-deterministically guesses and accepts if it reaches s.



Caveat: Reversing transitions may create an NFA.

**Proof (DFA to NFA):** Let  $M = (\Sigma, Q, s, A, \delta)$  be an arbitrary DFA that accepts *L*. We construct an NFA  $M^R = (\Sigma, Q^R, s^R, A^R, \delta^R)$  with  $\varepsilon$ -transitions that accepts  $L^R$ , intuitively by reversing every transition in *M*, and swapping the roles of the start state and the accepting states. Because *M* does not have a unique accepting state, we need to introduce a special start state  $s^R$ , with  $\varepsilon$ -transitions to each accepting state in *M*. These are the only  $\varepsilon$ -transitions in  $M^R$ .

$$\begin{aligned} Q^{R} &= Q \cup \{s^{R}\} \\ A^{R} &= \{s\} \\ \delta^{R}(s^{R}, \varepsilon) &= A \\ \delta^{R}(s^{R}, a) &= \emptyset & \text{for all } a \in \Sigma \\ \delta^{R}(q, \varepsilon) &= \emptyset & \text{for all } q \in Q \\ \delta^{R}(q, a) &= \{p \mid q \notin \delta(p, a)\} & \text{for all } q \in Q \text{ and } a \in \Sigma \end{aligned}$$

Routine inductive definition-chasing now implies that the reversal of any sequence  $q_0 \rightarrow q_1 \rightarrow \cdots \rightarrow q_\ell$  of transitions in M is a valid sequence  $q_\ell \rightarrow q_{\ell-1} \rightarrow \cdots \rightarrow q_0$  of transitions in  $M^R$ . Because the transitions retain their labels (but reverse directions), it follows that M accepts any string w if and only if  $M^R$  accepts  $w^R$ .

We conclude that the NFA  $M^R$  accepts  $L^R$ , so  $L^R$  must be regular.

### $CYCLE(L) = \{yx \mid x, y \in \mathbf{\Sigma}^*, xy \in L\}$

#### Theorem

**CYCLE(L)** is regular if **L** is regular.

 $CYCLE(L) = \{yx \mid x, y \in \mathbf{\Sigma}^*, xy \in L\}$ 

#### Theorem

**CYCLE(L)** is regular if **L** is regular.

Example:  $L = \{abc, 374a\}$  $CYCLE(L) = \begin{cases} abc, bca, cab, a374, 4a37, 74a3, 394a \end{cases}$ 

### $CYCLE(L) = \{yx \mid x, y \in \mathbf{\Sigma}^*, xy \in L\}$

#### Theorem

**CYCLE(L)** is regular if **L** is regular.

### $CYCLE(L) = \{yx \mid x, y \in \mathbf{\Sigma}^*, xy \in L\}$

#### Theorem

**CYCLE(L)** is regular if **L** is regular.

Given DFA M for L create NFA N that accepts CYCLE(L).

- **N** is a finite state machine, cannot know split of **w** into **xy** and yet has to simulate **M** on **x** and **y**.
- Exploit fact that M is itself a finite state machine. N only needs to "know" the state  $\delta^*_M(s, x)$  and there are only finite number of states in M

## Construction for CYCLE

Let w = xy and w' = yx.

- N guesses state  $q = \delta_M^*(s, x)$  and simulates M on w' with start state q.
- N guesses when y ends (at that point M must be in an accept state) and transitions to a copy of M to simulate M on remaining part of w' (which is x)
- N accepts w' if after second copy of M on x it ends up in the guessed state q

### Construction for CYCLE



### Proving correctness

**Exercise:** Write down formal description of *N* in tuple notation starting with  $M = (Q, \Sigma, \delta, s, A)$ .

Need to argue that L(N) = CYCLE(L(M))

- If w = xy accepted by M then argue that yx is accepted by N
- If N accepts w' then argue that w' = yx such that xy accepted by M.

$$L_1 = \{0^n 1^n \mid n \ge 0\}$$
  

$$L_2 = \{w \in \{0, 1\}^* \mid \#_0(w) = \#_1(w)\}$$
  

$$L_3 = \{0^i 1^j \mid i \ne j\}$$

$$\begin{array}{l} L_1 = \{ 0^n 1^n \mid n \geq 0 \} \\ L_2 = \{ w \in \{0,1\}^* \mid \#_0(w) = \#_1(w) \} \\ L_3 = \{ 0^i 1^j \mid i \neq j \} \end{array}$$

 $L_1$  is not regular. Can we use that fact to prove  $L_2$  and  $L_2$  are not regular without going through the fooling set argument?

$$\begin{array}{l} L_1 = \{ 0^n 1^n \mid n \geq 0 \} \\ L_2 = \{ w \in \{0,1\}^* \mid \#_0(w) = \#_1(w) \} \\ L_3 = \{ 0^i 1^j \mid i \neq j \} \end{array}$$

 $L_1$  is not regular. Can we use that fact to prove  $L_2$  and  $L_2$  are not regular without going through the fooling set argument?

 $L_1 = L_2 \cap 0^* 1^*$  hence if  $L_2$  is regular then  $L_1$  is regular, a contradiction.

$$\begin{array}{l} L_1 = \{ 0^n 1^n \mid n \geq 0 \} \\ L_2 = \{ w \in \{0,1\}^* \mid \#_0(w) = \#_1(w) \} \\ L_3 = \{ 0^i 1^j \mid i \neq j \} \end{array}$$

 $L_1$  is not regular. Can we use that fact to prove  $L_2$  and  $L_2$  are not regular without going through the fooling set argument?

 $L_1 = L_2 \cap 0^* 1^*$  hence if  $L_2$  is regular then  $L_1$  is regular, a contradiction.

 $L_1 = \bar{L_3} \cap 0^* 1^*$  hence if  $L_3$  is regular then  $L_1$  is regular, a contradiction

### Jeff's reminder about exam

Following topics not on the upcoming midterm exam

- $\bullet$  Transforming DFA/NFA into regular expressions (covered today)
- Minimizing DFA