CS/ECE 374: Algorithms & Models of Computation, Fall 2019

DFA to Regular Expressions, Language Transformations

Lecture 7 September 17, 2019

Regular Languages, DFAs, NFAs

Theorem

Languages accepted by DFAs, NFAs, and regular expressions are the same.

Regular Languages, DFAs, NFAs

Theorem

Languages accepted by DFAs, NFAs, and regular expressions are the same.

- DFAs are special cases of NFAs (trivial)
- NFAs accept regular expressions (we saw already, relative easy)
- DFAs accept languages accepted by NFAs (subset construction)
- Regular expressions for languages accepted by DFAs (sketch today, again later in the course)

Part I

[DFA to Regular Expressions](#page-3-0)

DFA to Regular Expressions

Theorem

Given a DFA $M = (Q, \Sigma, \delta, s, A)$ there is a regular expression r such that $L(r) = L(M)$. That is, regular expressions are as powerful as DFAs (and hence also NFAs).

- Simple algorithm but formal proof is technical. See notes.
- A different algorithm with an easier formal proof later in the course.

Stage 0: Input

Stage 1: Normalizing

b

Stage 2: Remove state A

Stage 4: Redrawn without old edges

Stage 4: Removing B

Stage 5: Redraw

Stage 6: Removing C

Stage 7: Redraw

init AC (ab∗a + b)(a + b) ∗

Stage 8: Extract regular expression

init AC (ab∗a + b)(a + b) ∗

Thus, the automata is equivalent to the regular expression $(ab^*a + b)(a + b)^*$.

Stage 8: Extract regular expression

init AC (ab∗a + b)(a + b) ∗

Thus, the automata is equivalent to the regular expression $(ab^*a + b)(a + b)^*$.

- States can be eliminated in any order
- **o** Can start with NFA

Part II

[Closure Properties and Language](#page-15-0) [Transformations](#page-15-0)

Closure propeties

Definition

(Informal) A set \bm{A} is **closed** under an operation **op** if applying **op** to any elements of \bm{A} results in an element that also belongs to \bm{A} .

Closure propeties

Definition

(Informal) A set **A** is **closed** under an operation **op** if applying **op** to any elements of \bm{A} results in an element that also belongs to \bm{A} .

Examples:

- Integers: closed under $+$, $-$, $*$, but not division.
- *Positive integers:* closed under $+$ but not under $-$
- Regular languages: closed under union, intersection, Kleene star, complement, difference, homomorphism, inverse homomorphism, reverse, . . .

Question: How do we prove that regular languages are closed under some new operation?

Question: How do we prove that regular languages are closed under some new operation?

Three broad approaches

• Use existing closure properties

Question: How do we prove that regular languages are closed under some new operation?

Three broad approaches

- Use existing closure properties
	- $\bm{\mathsf{L}}_1, \bm{\mathsf{L}}_2, \bm{\mathsf{L}}_3, \bm{\mathsf{L}}_4$ regular implies $(\bm{\mathsf{L}}_1 \bm{\mathsf{L}}_2) \cap (\bar{\bm{\mathsf{L}}}_3 \cup \bm{\mathsf{L}}_4)^*$ is regular

Question: How do we prove that regular languages are closed under some new operation?

Three broad approaches

- Use existing closure properties
	- $\bm{\mathsf{L}}_1, \bm{\mathsf{L}}_2, \bm{\mathsf{L}}_3, \bm{\mathsf{L}}_4$ regular implies $(\bm{\mathsf{L}}_1 \bm{\mathsf{L}}_2) \cap (\bar{\bm{\mathsf{L}}}_3 \cup \bm{\mathsf{L}}_4)^*$ is regular

• Transform regular expressions

Question: How do we prove that regular languages are closed under some new operation?

Three broad approaches

- Use existing closure properties
	- $\bm{\mathsf{L}}_1, \bm{\mathsf{L}}_2, \bm{\mathsf{L}}_3, \bm{\mathsf{L}}_4$ regular implies $(\bm{\mathsf{L}}_1 \bm{\mathsf{L}}_2) \cap (\bar{\bm{\mathsf{L}}}_3 \cup \bm{\mathsf{L}}_4)^*$ is regular
- Transform regular expressions
- **•** Transform DFAs to NFAs versatile technique and shows the power of nondeterminism

Given string w , w^R is reverse of w . For a language L define $L^R = \{w^R \mid w \in L\}$ as reverse of L .

Given string w , w^R is reverse of w . For a language L define $L^R = \{w^R \mid w \in L\}$ as reverse of L .

Theorem

 L^R is regular if L is regular.

Given string w , w^R is reverse of w . For a language L define $L^R = \{w^R \mid w \in L\}$ as reverse of L .

Theorem

 L^R is regular if L is regular.

Infinitely many regular languages!

Given string w , w^R is reverse of w . For a language L define $L^R = \{w^R \mid w \in L\}$ as reverse of L .

Theorem

 L^R is regular if L is regular.

Infinitely many regular languages!

Proof technique:

- take some finite representation of *such as regular expression* $*r*$
- Describe an algorithm \bm{A} that takes \bm{r} as input and outputs a regular expression r' such that $L(r') = (L(r))^R$.
- \bullet Come up with \bm{A} and prove its correctness.

Suppose r is a regular expression for L . How do we create a regular expression r' for L^R ?

$$
(0|0+101)^{*}|10
$$

\n $100+0100$
\n $(00+0100)$
\n $(100)^{*}(001)^{*}$

Suppose r is a regular expression for L . How do we create a regular expression r' for L^R ? Inductively based on recursive definition of r .

- $r = \emptyset$ or $r = a$ for some $a \in \Sigma$
- $\bullet r = r_1 + r_2$
- $\bullet r = r_1 \cdot r_2$
- $r = (r_1)^*$

•
$$
r = \emptyset
$$
 or $r = a$ for some $a \in \Sigma$
 $r' = r$

- $r = \emptyset$ or $r = a$ for some $a \in \Sigma$ $r' = r$
- $r = r_1 + r_2$. If r'_1 r'_1, r'_2 \mathcal{L}_2' are reg expressions for $(L(r_1))^R, (L(r_2))^R$ then $r' =$

•
$$
r = \emptyset
$$
 or $r = a$ for some $a \in \Sigma$
 $r' = r$

 $r = r_1 + r_2$. If r'_1 t'_1, t'_2 \mathcal{L}_2' are reg expressions for $(L(r_1))^R, (L(r_2))^R$ then $r' = r'_1 + r'_2$ 2

- $r = \emptyset$ or $r = a$ for some $a \in \Sigma$ $r' = r$
- $r = r_1 + r_2$. If r'_1 t'_1, t'_2 \mathcal{L}_2' are reg expressions for $(L(r_1))^R, (L(r_2))^R$ then $r' = r'_1 + r'_2$ 2
- $r = r_1 \cdot r_2$. If r'_1 r'_1, r'_2 \mathcal{L}_2' are reg expressions for $(L(r_1))^R, (L(r_2))^R$ then $r' =$

- $r = \emptyset$ or $r = a$ for some $a \in \Sigma$ $r' = r$
- $r = r_1 + r_2$. If r'_1 t'_1, t'_2 \mathcal{L}_2' are reg expressions for $(L(r_1))^R, (L(r_2))^R$ then $r' = r'_1 + r'_2$ 2
- $r = r_1 \cdot r_2$. If r'_1 t'_1, t'_2 \mathcal{L}_2' are reg expressions for $(L(r_1))^R, (L(r_2))^R$ then $r' = r'_2$ $r'_{2} \cdot r'_{1}$ 1 If you anotings
Aun (uv)^R= vRuR

•
$$
r = \emptyset
$$
 or $r = a$ for some $a \in \Sigma$
 $r' = r$

- $r = r_1 + r_2$. If r'_1 t'_1, t'_2 \mathcal{L}_2' are reg expressions for $(L(r_1))^R, (L(r_2))^R$ then $r' = r'_1 + r'_2$ 2
- $r = r_1 \cdot r_2$. If r'_1 t'_1, t'_2 \mathcal{L}_2' are reg expressions for $(L(r_1))^R, (L(r_2))^R$ then $r' = r'_2$ $r'_{2} \cdot r'_{1}$ 1
- $r = (r_1)^*$. If r'_1 \mathbf{r}'_1 is reg expressions for $(L(r_1))^R$ then $r' = (r'_1)$ 1) ∗

$$
R_{i}^* = \left(\Sigma + R_{i} + R_{i}R_{i} + R_{i}R_{i} + \cdots \right)
$$

$$
\Sigma + R_{i}^{\prime} \times R_{i}^{\prime}R_{i}^{\prime} + R_{i}^{\prime}R_{i}^{\prime}R_{i}^{\prime} - \cdots \right)
$$

$$
= (R_{i}^{\prime})^{*}
$$

- $r = \emptyset$ or $r = a$ for some $a \in \Sigma$ $r' = r$
- $r = r_1 + r_2$. If r'_1 t'_1, t'_2 \mathcal{L}_2' are reg expressions for $(L(r_1))^R, (L(r_2))^R$ then $r' = r'_1 + r'_2$ 2
- $r = r_1 \cdot r_2$. If r'_1 t'_1, t'_2 \mathcal{L}_2' are reg expressions for $(L(r_1))^R, (L(r_2))^R$ then $r' = r'_2$ $r'_{2} \cdot r'_{1}$ 1
- $r = (r_1)^*$. If r'_1 \mathbf{r}'_1 is reg expressions for $(L(r_1))^R$ then $r' = (r'_1)$ 1) ∗
- $r = (0 + 10)$ * $(001 + 01)1$ then $r' =$

- $r = \emptyset$ or $r = a$ for some $a \in \Sigma$ $r' = r$
- $r = r_1 + r_2$. If r'_1 t'_1, t'_2 \mathcal{L}_2' are reg expressions for $(L(r_1))^R, (L(r_2))^R$ then $r' = r'_1 + r'_2$ 2
- $r = r_1 \cdot r_2$. If r'_1 t'_1, t'_2 \mathcal{L}_2' are reg expressions for $(L(r_1))^R, (L(r_2))^R$ then $r' = r'_2$ $r'_{2} \cdot r'_{1}$ 1
- $r = (r_1)^*$. If r'_1 \mathbf{r}'_1 is reg expressions for $(L(r_1))^R$ then $r' = (r'_1)$ 1) ∗
- $r = (0 + 10)^*(001 + 01)1$ then $r' = 1(100 + 10)(0 + 01)^*$

•
$$
r = \emptyset
$$
 or $r = a$ for some $a \in \Sigma$
 $r' = r$

- $r = r_1 + r_2$. If r'_1 t'_1, t'_2 \mathcal{L}_2' are reg expressions for $(L(r_1))^R, (L(r_2))^R$ then $r' = r'_1 + r'_2$ 2
- $r = r_1 \cdot r_2$. If r'_1 t'_1, t'_2 \mathcal{L}_2' are reg expressions for $(L(r_1))^R, (L(r_2))^R$ then $r' = r'_2$ $r'_{2} \cdot r'_{1}$ 1
- $r = (r_1)^*$. If r'_1 \mathbf{r}'_1 is reg expressions for $(L(r_1))^R$ then $r' = (r'_1)$ 1) ∗

$r = (0 + 10)^*(001 + 01)1$ then $r' = 1(100 + 10)(0 + 01)^*$

Proof for each identity: tedious case analysis based on definitions of union, concatenation, Kleene star and reverse.

Given DFA $M = (Q, \Sigma, \delta, s, A)$ want NFA N such that $L(N) = (L(M))^R$.

N should accept w^R iff M accepts w

M accepts w iff $\delta^*_M(s, w) \in A$

Idea: N reverses transitions of M and starts at a final state of M.

Given DFA $M = (Q, \Sigma, \delta, s, A)$ want NFA N such that $L(N) = (L(M))^R$.

N should accept w^R iff M accepts w

M accepts w iff $\delta^*_M(s, w) \in A$

Idea: N reverses transitions of M and starts at a final state of M. Which one?

Given DFA $M = (Q, \Sigma, \delta, s, A)$ want NFA N such that $L(N) = (L(M))^R$.

N should accept w^R iff M accepts w

M accepts w iff $\delta^*_M(s, w) \in A$

Idea: N reverses transitions of M and starts at a final state of M. Which one? Non-deterministically guesses and accepts if it reaches s.

Caveat: Reversing transitions may create an NFA.

Chandra Chekuri (UIUC) [CS/ECE 374](#page-0-0) 21 Fall 2019 21 / 29

Proof (DFA to NFA): Let $M = (\Sigma, Q, s, A, \delta)$ be an arbitrary DFA that accepts *L*. We construct an NFA $M^R = (\Sigma, Q^R, s^R, A^R, \delta^R)$ with ε -transitions that accepts L^R , intuitively by reversing every transition in *M*, and swapping the roles of the start state and the accepting states. Because *M* does not have a unique accepting state, we need to introduce a special start state *s ^R*, with ε -transitions to each accepting state in *M*. These are the only ε -transitions in M^R .

$$
Q^{R} = Q \cup \{s^{R}\}
$$

\n
$$
A^{R} = \{s\}
$$

\n
$$
\delta^{R}(s^{R}, \alpha) = \emptyset
$$

\n
$$
\delta^{R}(q, \epsilon) = \emptyset
$$

\nfor all $q \in \Sigma$
\nfor all $q \in Q$
\nfor all $q \in Q$
\nfor all $q \in Q$ and $\alpha \in \Sigma$

Routine inductive definition-chasing now implies that the reversal of any sequence $q_0 \rightarrow q_1 \rightarrow \cdots \rightarrow q_\ell$ of transitions in *M* is a valid sequence $q_{\ell} \rightarrow q_{\ell-1} \rightarrow \cdots \rightarrow q_0$ of transitions in M^R . Because the transitions retain their labels (but reverse directions), it follows that *M* accepts any string *w* if and only if *M^R* accepts *wR*.

We conclude that the NFA M^R accepts L^R , so L^R must be regular.

• (*L*⇤)

^R = (*LR*) ⇤.

$CYCLE(L) = \{yx \mid x, y \in \Sigma^*, xy \in L\}$

Theorem

 $CYCLE(L)$ is regular if L is regular.

$$
CYCLE(L) = \{yx \mid x, y \in \Sigma^*, xy \in L\}
$$

Theorem

 $CYCLE(L)$ is regular if L is regular.

Example: $L = \{abc, 374a\}$ $CYCLE(L) = \begin{cases} abc, & bca, & cab, & a3.74, & ba37, \\ a, & 394a \end{cases}$

$CYCLE(L) = \{yx \mid x, y \in \Sigma^*, xy \in L\}$

Theorem

 $CYCLE(L)$ is regular if L is regular.

$CYCLE(L) = \{yx \mid x, y \in \Sigma^*, xy \in L\}$

Theorem

 $CYCLE(L)$ is regular if L is regular.

Given DFA M for L create NFA N that accepts $CYCLE(L)$.

- \bullet N is a finite state machine, cannot know split of w into xy and yet has to simulate M on x and y .
- \bullet Exploit fact that M is itself a finite state machine. N only needs to "know" the state $\delta_M^*(s,x)$ and there are only finite number of states in M

Construction for CYCLE

Let $w = xy$ and $w' = yx$.

- *N* guesses state $q = \delta_M^*(s, x)$ and simulates *M* on *w'* with start state q .
- \bullet N guesses when y ends (at that point M must be in an accept state) and transitions to a copy of M to simulate M on remaining part of w' (which is x)
- N accepts w' if after second copy of M on x it ends up in the guessed state q

Construction for CYCLE

Proving correctness

Exercise: Write down formal description of N in tuple notation starting with $M = (Q, \Sigma, \delta, s, A)$.

Need to argue that $L(N) = CYCLE(L(M))$

- If $w = xy$ accepted by M then argue that yx is accepted by N
- If N accepts w' then argue that $w' = yx$ such that xy accepted by M .

$$
L_1 = \{0^n1^n \mid n \ge 0\}
$$

\n
$$
L_2 = \{w \in \{0, 1\}^* \mid \#_0(w) = \#_1(w)\}
$$

\n
$$
L_3 = \{0^i1^j \mid i \ne j\}
$$

$$
L_1 = \{0^n1^n \mid n \ge 0\}
$$

\n
$$
L_2 = \{w \in \{0, 1\}^* \mid \#_0(w) = \#_1(w)\}
$$

\n
$$
L_3 = \{0^i1^j \mid i \ne j\}
$$

 L_1 is not regular. Can we use that fact to prove L_2 and L_2 are not regular without going through the fooling set argument?

$$
L_1 = \{0^n1^n \mid n \ge 0\}
$$

\n
$$
L_2 = \{w \in \{0, 1\}^* \mid \#_0(w) = \#_1(w)\}
$$

\n
$$
L_3 = \{0^i1^j \mid i \ne j\}
$$

 L_1 is not regular. Can we use that fact to prove L_2 and L_2 are not regular without going through the fooling set argument?

 $L_1 = L_2 \cap 0^*1^*$ hence if L_2 is regular then L_1 is regular, a contradiction.

$$
L_1 = \{0^n1^n \mid n \ge 0\}
$$

\n
$$
L_2 = \{w \in \{0, 1\}^* \mid \#_0(w) = \#_1(w)\}
$$

\n
$$
L_3 = \{0^i1^j \mid i \ne j\}
$$

 L_1 is not regular. Can we use that fact to prove L_2 and L_2 are not regular without going through the fooling set argument?

 $L_1 = L_2 \cap 0^*1^*$ hence if L_2 is regular then L_1 is regular, a contradiction.

 $L_1 = \bar{L_3} \cap 0^*1^*$ hence if L_3 is regular then L_1 is regular, a contradiction

Jeff's reminder about exam

Following topics not on the upcoming midterm exam

- Transforming DFA/NFA into regular expressions (covered today)
- Minimizing DFA \bullet