
CS/ECE ��� A] Spring ����

Y Midterm � Study Questions Z

This is a “core dump” of potential questions for Midterm �. This should give you a good idea
of the types of questions that we will ask on the exam—in particular, there will be a series of
True/False questions—but the actual exam questions may or may not appear in this handout.
This list intentionally includes a few questions that are too long or difficult for exam conditions;
most of these are indicated with a ⇤star.

Questions from Jeff ’s past exams are labeled with the semester they were used: hhS��ii,
hhF��ii, or hhF��ii. Questions from this semester’s homework are labeled hhHWii. Questions from
this semester’s labs are labeled hhLabii. Some unflagged questions may have been used in exams
by other instructors.

Y How to Use These Problems Z

Solving every problem in this handout is not the best way to study for the exam. Memorizing
the solutions to every problem in this handout is the absolute worst way to study for the exam.

What we recommend instead is to work on a sample of the problems. Choose one or
two problems at random from each section and try to solve them from scratch under exam
conditions—by yourself, in a quiet room, with a ��-minute timer, without your notes, without
the internet, and if possible, even without your cheat sheet. If you’re comfortable solving a few
problems in a particular section, you’re probably ready for that type of problem on the exam.
Move on to the next section.

Discussing problems with other people (in your study groups, in the review sessions, in office
hours, or on Piazza) and/or looking up old solutions can be extremely helpful, but only after you
have (�) made a good-faith effort to solve the problem on your own, and (�) you have either a
candidate solution or some idea about where you’re getting stuck.

If you find yourself getting stuck on a particular type of problem, try to figure out why you’re
stuck. Do you understand the problem statement? Are you stuck on choosing the right high-level
approach, are you stuck on the technical details, or are you struggling to express your ideas
clearly?

Similarly, if feedback suggests that your solutions to a particular type of problem are incorrect
or incomplete, try to figure out what you missed. For induction proofs: Are you sure you have
the right induction hypothesis? Are your cases obviously exhaustive? For regular expressions,
DFAs, NFAs, and context-free grammars: Is your solution both exclusive and exhaustive? Did you
try a few positive examples and a few negative examples? For fooling sets: Are you imposing
enough structure? Are x and y really arbitrary strings from F? For language transformations:
Are you transforming in the right direction? Are you using non-determinism correctly? Do you
understand the formal notation for DFAs and NFAs?

Remember that your goal is not merely to “understand” the solution to any particular
problem, but to become more comfortable with solving a certain type of problem on your own.
"Understanding" is a trap; aim for mastery. If you can identify specific steps that you find
problematic, read more about those steps, focus your practice on those steps, and try to find helpful
information about those steps to write on your cheat sheet. Then work on the next problem!

�

CS/ECE ��� A Midterm � Study Questions Spring ����

Recursion and Dynamic Programming

Elementary Recursion/Divide and Conquer

�. hhLabii

(a) Suppose A[1 .. n] is an array of n distinct integers, sorted so that A[1] < A[2]< · · ·<
A[n]. Each integer A[i] could be positive, negative, or zero. Describe a fast algorithm
that either computes an index i such that A[i] = i or correctly reports that no such
index exists..

(b) Now suppose A[1 .. n] is a sorted array of n distinct positive integers. Describe an
even faster algorithm that either computes an index i such that A[i] = i or correctly
reports that no such index exists. [Hint: This is really easy.]

�. hhLabii Suppose we are given an array A[1 .. n] such that A[1]� A[2] and A[n� 1] A[n].
We say that an element A[x] is a local minimum if both A[x�1]� A[x] and A[x] A[x+1].
For example, there are exactly six local minima in the following array:

9
Œ
7 7 2

Œ
1 3 7 5

Œ
4 7

Œ
3
Œ
3 4 8

Œ
6 9

Describe and analyze a fast algorithm that returns the index of one local minimum. For
example, given the array above, your algorithm could return the integer �, because A[5] is
a local minimum. [Hint: With the given boundary conditions, any array must contain at
least one local minimum. Why?]

�. hhLabii Suppose you are given two sorted arrays A[1 .. n] and B[1 .. n] containing distinct
integers. Describe a fast algorithm to find the median (meaning the nth smallest element)
of the union A[B. For example, given the input

A[1 .. 8] = [0, 1,6, 9,12, 13,18, 20] B[1 .. 8] = [2, 4,5, 8,17, 19,21, 23]

your algorithm should return the integer 9. [Hint: What can you learn by comparing one
element of A with one element of B?]

�. hhF��, S��ii An array A[0 .. n�1] of n distinct numbers is bitonic if there are unique indices i

and j such that A[(i�1)mod n]< A[i]> A[(i+1)mod n] and A[(j�1)mod n]> A[j]<
A[(j + 1)mod n]. In other words, a bitonic sequence either consists of an increasing
sequence followed by a decreasing sequence, or can be circularly shifted to become so. For
example,

4 6 9 8 7 5 1 2 3 is bitonic, but

3 6 9 8 7 5 1 2 4 is not bitonic.

Describe and analyze an algorithm to find the index of the smallest element in a given
bitonic array A[0 .. n� 1] in O(log n) time. You may assume that the numbers in the input
array are distinct. For example, given the first array above, your algorithm should return 6,
because A[6] = 1 is the smallest element in that array.

�

CS/ECE ��� A Midterm � Study Questions Spring ����

�. hhF��ii Suppose you are given a sorted array A[1 .. n] of distinct numbers that has been
rotated k steps, for some unknown integer k between 1 and n� 1. That is, the prefix
A[1 .. k] is sorted in increasing order, the suffix A[k+ 1 .. n] is sorted in increasing order,
and A[n]< A[1]. For example, you might be given the following ��-element array (where
k = 10):

9 13 16 18 19 23 28 31 37 42 �4 0 2 5 7 8

Describe and analyze an efficient algorithm to determine if the given array contains a
given number x . The input to your algorithm is the array A[1 .. n] and the number x; your
algorithm is not given the integer k.

�. hhF��ii Suppose you are given two unsorted arrays A[1 .. n] and B[1 .. n] containing 2n

distinct integers, such that A[1]< B[1] and A[n]> B[n]. Describe and analyze an efficient
algorithm to compute an index i such that A[i]< B[i] and A[i+1]> B[i+1]. [Hint: Why
does such an index i always exist?]

�. Suppose you are given a stack of n pancakes of different sizes. You want to sort the
pancakes so that smaller pancakes are on top of larger pancakes. The only operation
you can perform is a flip—insert a spatula under the top k pancakes, for some integer k

between 1 and n, and flip them all over.

Figure 1. Flipping the top four pancakes.

(a) Describe an algorithm to sort an arbitrary stack of n pancakes using as few flips as
possible. Exactly how many flips does your algorithm perform in the worst case?

(b) Now suppose one side of each pancake is burned. Describe an algorithm to sort an
arbitrary stack of n pancakes, so that the burned side of every pancake is facing down,
using as few flips as possible. Exactly how many flips does your algorithm perform in
the worst case?

[Hint: This problem has nothing to do with the Tower of Hanoi!]

�. (a) Describe an algorithm to determine in O(n) time whether an arbitrary array A[1 .. n]
contains more than n/4 copies of any value.

(b) Describe and analyze an algorithm to determine, given an arbitrary array A[1 .. n]
and an integer k, whether A contains more than k copies of any value. Express the
running time of your algorithm as a function of both n and k.

Do not use hashing, or radix sort, or any other method that depends on the precise
input values, as opposed to their order.

�

CS/ECE ��� A Midterm � Study Questions Spring ����

�. For this problem, a subtree of a binary tree means any connected subgraph. A binary tree is
complete if every internal node has two children, and every leaf has exactly the same depth.
Describe and analyze a recursive algorithm to compute the largest complete subtree of a
given binary tree. Your algorithm should return both the root and the depth of this subtree.

The largest complete subtree of this binary tree has depth 2.

�

CS/ECE ��� A Midterm � Study Questions Spring ����

Dynamic Programming

�. hhLabii Describe and analyze efficient algorithms for the following problems.

(a) Given an array A[1 .. n] of integers, compute the length of a longest increasing
subsequence of A. A sequence B[1 ..`] is increasing if B[i]> B[i � 1] for every index
i � 2.

(b) Given an array A[1 .. n] of integers, compute the length of a longest decreasing
subsequence of A. A sequence B[1 ..`] is decreasing if B[i] < B[i � 1] for every index
i � 2.

(c) Given an array A[1 .. n] of integers, compute the length of a longest alternating
subsequence of A. A sequence B[1 ..`] is alternating if B[i]< B[i � 1] for every even
index i � 2, and B[i]> B[i � 1] for every odd index i � 3.

(d) Given an arrayA[1 .. n] of integers, compute the length of a longest convex subsequence
of A. A sequence B[1 ..`] is convex if B[i]� B[i � 1] > B[i � 1]� B[i � 2] for every
index i � 3.

(e) Given an array A[1 .. n], compute the length of a longest palindrome subsequence
of A. Recall that a sequence B[1 ..`] is a palindrome if B[i] = B[`� i + 1] for every
index i.

�. hhF��, HWii It’s almost time to show off your flippin’ sweet dancing skills! Tomorrow is
the big dance contest you’ve been training for your entire life, except for that summer you
spent with your uncle in Alaska hunting wolverines. You’ve obtained an advance copy of
the the list of n songs that the judges will play during the contest, in chronological order.

You know all the songs, all the judges, and your own dancing ability extremely well.
For each integer k, you know that if you dance to the kth song on the schedule, you will be
awarded exactly Score[k] points, but then you will be physically unable to dance for the
next Wait[k] songs (that is, you cannot dance to songs k + 1 through k +Wait[k]). The
dancer with the highest total score at the end of the night wins the contest, so you want
your total score to be as high as possible.

Describe and analyze an efficient algorithm to compute the maximum total score you
can achieve. The input to your sweet algorithm is the pair of arrays Score[1 .. n] and
Wait[1 .. n].

�. hhS��ii After the Revolutionary War, Alexander Hamilton’s biggest rival as a lawyer was
Aaron Burr. (Sir!) In fact, the two worked next door to each other. Unlike Hamilton, Burr
cannot work non-stop; every case he tries exhausts him. The bigger the case, the longer he
must rest before he is well enough to take the next case. (Of course, he is willing to wait
for it.) If a case arrives while Burr is resting, Hamilton snatches it up instead.

Burr has been asked to consider a sequence of n upcoming cases. He quickly computes
two arrays profit[1 .. n] and skip[1 .. n], where for each index i,

• profit[i] is the amount of money Burr would make by taking the ith case, and
• skip[i] is the number of consecutive cases Burr must skip if he accepts the ith case.

That is, if Burr accepts the ith case, he cannot accept cases i + 1 through i + skip[i].

�

CS/ECE ��� A Midterm � Study Questions Spring ����

Design and analyze an algorithm that determines the maximum total profit Burr can secure
from these n cases, using his two arrays as input.

�. hhS��ii Recall that a palindrome is any string that is the same as its reversal. For example,
I, DAD, HANNAH, AIBOHPHOBIA (fear of palindromes), and the empty string are all
palindromes.

(a) Describe and analyze an algorithm to find the length of the longest substring (not
subsequence!) of a given input string that is a palindrome. For example, BASEESAB is
the longest palindrome substring of BUBBASEESABANANA (“Bubba sees a banana.”).
Thus, given the input string BUBBASEESABANANA, your algorithm should return
the integer 8.

(b) hhLab, F��ii Describe and analyze an algorithm to find the length of the longest sub-
sequence (not substring!) of a given input string that is a palindrome. For example, the
longest palindrome subsequence of MAHDYNAMICPROGRAMZLETMESHOWYOUTHEM
is MHYMRORMYHM, so given that string as input, your algorithm should output the
number ��.

(c) hhHWii Any string can be decomposed into a sequence of palindrome substrings. For
example, the string BUBBASEESABANANA can be broken into palindromes in the
following ways (and many others):

BUB+ BASEESAB+ ANANA
B+ U+ BB+ A+ SEES+ ABA+ NAN+ A
B+ U+ BB+ A+ SEES+ A+ B+ ANANA

B+ U+ B+ B+ A+ S+ E+ E+ S+ A+ B+ A+ N+ A+ N+ A

Describe and analyze an algorithm to find the smallest number of palindromes that
make up a given input string. For example, if your input is the string BUBBASEESA-
BANANA, your algorithm should return the integer 3.

�. hhF��ii A shuffle of two strings X and Y is formed by interspersing the characters into a
new string, keeping the characters of X and Y in the same order. For example, the string
BANANAANANAS is a shuffle of the strings BANANA and ANANAS in several different ways.

BANANAANANAS BANANAANANAS BANANAANANAS

Similarly, the strings PRODGYRNAMAMMIINCG and DYPRONGARMAMMICING are both
shuffles of DYNAMIC and PROGRAMMING:

PRODGYRNAMAMMIINCG DYPRONGARMAMMICING

Describe and analyze an efficient algorithm to determine, given three strings A[1 .. m],
B[1 .. n], and C[1 .. m+ n], whether C is a shuffle of A and B.

�. Suppose we are given an n-digit integer X . Repeatedly remove one digit from either end
of X (your choice) until no digits are left. The square-depth of X is the maximum number

�

CS/ECE ��� A Midterm � Study Questions Spring ����

of perfect squares that you can see during this process. For example, the number 32492
has square-depth 3, by the following sequence of removals:

32492! 3249/2! 324/9! /324! /24! /4.

Describe and analyze an algorithm to compute the square-depth of a given integer X ,
represented as an array X [1 .. n] of n decimal digits. Assume you have access to a subroutine
I�S����� that determines whether a given k-digit number (represented by an array of
digits) is a perfect square in O(k2) time.

�. Suppose you are given a sequence of non-negative integers separated by + and ⇥ signs; for
example:

2⇥ 3+ 0⇥ 6⇥ 1+ 4⇥ 2

You can change the value of this expression by adding parentheses in different places. For
example:

2⇥ (3+ (0⇥ (6⇥ (1+ (4⇥ 2))))) = 6

(((((2⇥ 3) + 0)⇥ 6)⇥ 1) + 4)⇥ 2= 80

((2⇥ 3) + (0⇥ 6))⇥ (1+ (4⇥ 2)) = 108

(((2⇥ 3) + 0)⇥ 6)⇥ ((1+ 4)⇥ 2) = 360

Describe and analyze an algorithm to compute, given a list of integers separated by + and
⇥ signs, the smallest possible value we can obtain by inserting parentheses.

Your input is an array A[0 .. 2n] where each A[i] is an integer if i is even and + or ⇥ if i

is odd. Assume any arithmetic operation in your algorithm takes O(1) time.

�. Suppose you are given an array A[1 .. n] of numbers, which may be positive, negative, or
zero, and which are not necessarily integers.

(a) Describe and analyze an algorithm that finds the largest sum of of elements in a
contiguous subarray A[i .. j].

(b) Describe and analyze an algorithm that finds the largest product of of elements in a
contiguous subarray A[i .. j].

For example, given the array [�6, 12,�7, 0,14,�7, 5] as input, your first algorithm should
return the integer 19, and your second algorithm should return the integer 504.

sum=19z }| {
�6 12 �7 0 14 �7 5
| {z }

product=504

For the sake of analysis, assume that comparing, adding, or multiplying any pair of numbers
takes O(1) time.

[Hint: Problem (a) has been a standard computer science interview question since at
least the mid-����s. You can find many correct solutions on the web; the problem even
has its own Wikipedia page! But at least in ����, a significant fraction of the solutions
I found on the web for problem (b) were either significantly slower than necessary or
actually incorrect. Remember that the product of two negative numbers is positive.]

�

http://en.wikipedia.org/wiki/Maximum_subarray_problem

CS/ECE ��� A Midterm � Study Questions Spring ����

�. Suppose you are given three strings A[1 .. n], B[1 .. n], and C[1 .. n].

(a) Describe and analyze an algorithm to find the length of the longest common sub-
sequence of all three strings. For example, given the input strings

A= AxxBxxCDxEF, B = yyABCDyEyFy, C = zAzzBCDzEFz,

your algorithm should output the number �, which is the length of the longest common
subsequence ABCDEF.

(b) Describe and analyze an algorithm to find the length of the shortest common
supersequence of all three strings. For example, given the input strings

A= AxxBxxCDxEF, B = yyABCDyEyFy, C = zAzzBCDzEFz,

your algorithm should output the number ��, which is the length of the shortest
common supersequence yzyAxzzxBxxCDxyzEyFzy.

��. (a) Suppose we are given a set L of n line segments in the plane, where each segment
has one endpoint on the line y = 0 and one endpoint on the line y = 1, and all 2n

endpoints are distinct. Describe and analyze an algorithm to compute the largest
subset of L in which no pair of segments intersects.

(b) Suppose we are given a set L of n line segments in the plane, where each segment
has one endpoint on the line y = 0 and one endpoint on the line y = 1, and all 2n

endpoints are distinct. Describe and analyze an algorithm to compute the largest
subset of L in which every pair of segments intersects.

��. Suppose you are given an m⇥ n bitmap, represented by an array M[1 .. n, 1 .. n] of 0s and
1s. A solid square block in M is a subarray of the form M[i .. i+w, j .. j+w] containing only
1-bits. Describe and analyze an algorithm to find the largest solid square block in M .

��. You and your six-year-old nephew Elmo decide to play a simple card game. At the beginning
of the game, the cards are dealt face up in a long row. Each card is worth a different
number of points. After all the cards are dealt, you and Elmo take turns removing either
the leftmost or rightmost card from the row, until all the cards are gone. At each turn, you
can decide which of the two cards to take. The winner of the game is the player that has
collected the most points when the game ends.

Having never taken an algorithms class, Elmo follows the obvious greedy strategy—
when it’s his turn, Elmo always takes the card with the higher point value. Your task is to
find a strategy that will beat Elmo whenever possible. (It might seem mean to beat up on a
little kid like this, but Elmo absolutely hates it when grown-ups let him win.)

(a) Prove that you should not also use the greedy strategy. That is, show that there is
a game that you can win, but only if you do not follow the same greedy strategy as
Elmo.

(b) Describe and analyze an algorithm to determine, given the initial sequence of cards,
the maximum number of points that you can collect playing against Elmo.

�

CS/ECE ��� A Midterm � Study Questions Spring ����

(c) Five years later, thirteen-year-old Elmo has become a much stronger player. Describe
and analyze an algorithm to determine, given the initial sequence of cards, the
maximum number of points that you can collect playing against a perfect opponent.

��. hhS��ii Your nephew Elmo is visiting you for Christmas, and he’s brought a different card
game. Like your previous game with Elmo, this game is played with a row of n cards, each
labeled with an integer (which could be positive, negative, or zero). Both players can see
all n card values. Otherwise, the game is almost completely different.

On each turn, the current player must take the leftmost card. The player can either
keep the card or give it to their opponent. If they keep the card, their turn ends and their
opponent takes the next card; however, if they give the card to their opponent, the current
player’s turn continues with the next card. In short, the player that does not get the ith
card decides who gets the (i + 1)th card. The game ends when all cards have been played.
Each player adds up their card values, and whoever has the higher total wins.

For example, suppose the initial cards are [3,�1, 4,1, 5,9], and Elmo plays first. Then
the game might proceed as follows:

• Elmo keeps the 3, ending his turn.
• You give Elmo the �1.
• You keep the 4, ending your turn.
• Elmo gives you the 1.
• Elmo gives you the 5.
• Elmo keeps the 9, ending his turn. All cards are gone, so the game is over.
• Your score is 1+ 4+ 5= 10 and Elmo’s score is 3� 1+ 9= 11, so Elmo wins.

Describe an algorithm to compute the highest possible score you can earn from a given
row of cards, assuming Elmo plays first and plays perfectly. Your input is the array C[1 .. n]
of card values. For example, if the input is [3,�1,4, 1,5, 9], your algorithm should return
the integer 10.

��. hhF��ii The new swap-puzzle game Candy Swap Saga XIII involves n cute animals numbered 1
through n. Each animal holds one of three types of candy: circus peanuts, Heath bars, and
Cioccolateria Gardini chocolate truffles. You also have a candy in your hand; at the start of
the game, you have a circus peanut.

To earn points, you visit each of the animals in order from 1 to n. For each animal,
you can either keep the candy in your hand or exchange it with the candy the animal is
holding.

• If you swap your candy for another candy of the same type, you earn one point.
• If you swap your candy for a candy of a different type, you lose one point. (Yes, your

score can be negative.)
• If you visit an animal and decide not to swap candy, your score does not change.

�

CS/ECE ��� A Midterm � Study Questions Spring ����

You must visit the animals in order, and once you visit an animal, you can never visit it
again.

Describe and analyze an efficient algorithm to compute your maximum possible score.
Your input is an array C[1 .. n], where C[i] is the type of candy that the ith animal is
holding.

��. hhF��ii Farmers Boggis, Bunce, and Bean have set up an obstacle course for Mr. Fox. The
course consists of a row of n booths, each with an integer painted on the front with bright
red paint, which could be positive, negative, or zero. Let A[i] denote the number painted
on the front of the ith booth. Everyone has agreed to the following rules:

• At each booth, Mr. Fox must say either “Ring!” or “Ding!”.
• If Mr. Fox says “Ring!” at the ith booth, he earns a reward of A[i] chickens. (If

A[i]< 0, Mr. Fox pays a penalty of �A[i] chickens.)
• If Mr. Fox says “Ding!” at the ith booth, he pays a penalty of A[i] chickens. (If A[i]< 0,

Mr. Fox earns a reward of �A[i] chickens.)
• Mr. Fox is forbidden to say the same word more than three times in a row. For

example, if he says “Ring!” at booths �, �, and �, then he must say “Ding!” at booth �.
• All accounts will be settled at the end; Mr. Fox does not actually have to carry chickens

through the obstacle course.
• If Mr. Fox violates any of the rules, or if he ends the obstacle course owing the farmers

chickens, the farmers will shoot him.

Describe and analyze an algorithm to compute the largest number of chickens that Mr. Fox
can earn by running the obstacle course, given the array A[1 .. n] of booth numbers as
input.

��

