
CS/ECE 374 Homework 0 Solutions Fall 2019 / Section B

CS/ECE 374] Fall 2019 / Section B
Y Homework 0 Z

Solutions

1. String digit sums. Consider strings over the alphabet Σ= {0,1,2,3,4,5,6,7,8,9}. We
will recursively define the digsum function as follows:

• digsum(ε) = 0

• digsum(ax) = a+digsum(x), where a ∈ Σ is interpreted as the numeric value of the
digit.

For example, digsum(374) = 3+ 7+ 4= 14

(a) Prove that digsum(x · y) = digsum(x) + digsum(y). You may use the fact that
#(a, x · y) = #(a, x) +#(a, y), where #(a, x) is the number of occurences of the
symbol a in string x , as discussed in the lecture notes.

Solution: Direct inductive proof. We will prove that for all n ∈ N, for all strings x
with |x |= n, digsum(x · y) = digsum(x) + digsum(y).

Base case If |x |= 0 then x = ε. This means that x · y = y and digsum(x) = 0, so:

digsum(x · y) = digsum(y) = 0+ digsum(y) = digsum(x) + digsum(y)

Inductive case Suppose that n> 0 and the hypothesis is true for all k < n. Since
n > 0, then x = aw for some symbol a and string w with |w| < n. By the recursive
definition of concatenation, x · y = a(w · y). Then:

digsum(x · y) = digsum(a(w · y))
= a+ digsum(w · y) by definition of digsum

= a+ digsum(w) + digsum(y) by inductive hypothesis
= digsum(aw) + digsum(y) by definition of digsum

= digsum(x) + digsum(y)

Alternate solution. We can instead prove this by using the theorem about
concatenation of counts:

#(a, x · y) = #(a, x) +#(a, y)

We will first prove the following lemma:

digsum(x) =
9
∑

i=1

i ×#(i, x)

Proof. We will prove by induction that for all n ∈ N the lemma is true for all x with
|x |= n.

1

CS/ECE 374 Homework 0 Solutions Fall 2019 / Section B

Base case. If n= 0 then |x |= 0 and x = ε. Then digsum(x) = 0= #(i, x) for any
i ∈ 1, . . . 9.

Inductive case. Suppose n > 0 and the inductive hypothesis is true for all k < n.
Then x = aw for some symbol a and string w. We note that #(i, a) = 0 for i 6= a and
#(a, a) = 1, therefore

∑9
i=1 i ×#(i, a) = a.

digsum(x) = digsum(aw)

= a+ digsum(w) by definition of digsum

= a+
9
∑

i=1

i ×#(i, w) by inductive hypothesis

=
9
∑

i=1

i#(i, a) +
9
∑

i=1

i ×#(i, w) by observation abbove

=
9
∑

i=1

i × (#(i, a) +#(i, w)) collecting terms

=
9
∑

i=1

i ×#(i, aw) by concatenation of counts

=
9
∑

i=1

i ×#(i, x)

This proves the lemma. We now have:

digsum(x · y) =
9
∑

i=1

i ×#(i, x · y) by lemma

=
9
∑

i=1

i × (#(i, x)) +#(i, y)) by concatenation of counts

=
9
∑

i=1

i × (#(i, x)) +
9
∑

i=1

i × (#(i, y)) expanding

= digsum(x) + digsum(y) by lemma

�

(b) Prove that digsum(xR) = digsum(x). You can use any of the results proved in lab 1
in this proof.

Solution: We can prove this by induction; i.e., for all n ∈ N for all x with |x | = n,
digsum(x) = digsum(xR).

Base case. If n= 0 then x = ε and x = xR, so the result follows.
Inductive case. Suppose n> 0 and for all k < n the result holds. We have x = a ·w,

with xR = wR · a. By definition of digsum, digsum(x) = a+digsum(w). On the other
hand:

2

CS/ECE 374 Homework 0 Solutions Fall 2019 / Section B

digsum(xR) = digsum(wR · a)

= digsum(wR) + digsum(a) by part (a)
= digsum(w) + digsum(a) by the inductive hypothesis
= a+ digsum(w)

�

2. Just can’t even. Consider a language Lodd defined as follows:

• a ∈ Lodd for a ∈ {1,3,5,7,9}
• ax ∈ Lodd for a ∈ {0,2,4,6,8} and x ∈ Lodd

• ax b ∈ Lodd for a, b ∈ {1,3,5,7,9} and x ∈ Lodd

(a) Prove that 374 is not in Lodd

Solution: If 374 is in Lodd then it must correspond to one of the three recursive
definition rules. We can eliminate each possibility in turn:

• 374 6= a for any ain{1,3,5,7,9}
• 374 6= ax for any a ∈ {0,2,4,6,8} since 3 6∈ {0,2,4,6,8}.
• 374 6= ax b for any b ∈ {1,3,5,7,9} since 4 6∈ {1,3,5,7,9}.

�

(b) Prove that for any x ∈ Lodd, digsum(x) is odd.

Solution: Again we will prove this inductively: for any n ∈ N, for any x ∈ Lodd with
|x |= n, digsum(x) is odd.

Since Lodd does not contain ε we can make n= 1 be our base case. In that case,
x = a for some a ∈ {1,3,5,7,9}. Clearly digsum(x) = digsum(a) is odd in that
case.

For the inductive case, suppose that n> 1 and for k < n, all x ∈ Lodd with |x |= k
have an odd digsum. Consider x ∈ Lodd with |x |= n. Then either:

• x = aw for a in{0,2,4,6,8} and w ∈ Lodd. digsum(w) is odd by the inductive
hypothesis and a is even, therefore digsum(x) = a+ digsum(w) is odd.

• x = awb for a, b ∈ {1,3,5,7,9} and w ∈ Lodd. Again digsum(w) is odd by
the inductive hypothesis. Using question 1, we can see that digsum(awb) =
digsum(a)+digsum(w)+digsum(b). digsum(a) and digsum(b) are both going
to be even so digsum(awb) is odd.

�

(c) (Not for submission) Prove that any string with digsum(x) odd is in Lodd.

Solution: As pointed out on Piazza, this is false since the string 34 is not in Lodd. We
would need to fix the definition to include a fourth recursive rule:

• xa ∈ Lodd for any x ∈ Lodd and a ∈ {0,2,4,6,8}

3

CS/ECE 374 Homework 0 Solutions Fall 2019 / Section B

With this rule, we can prove by induction that for any n ∈ N, for any x with |x |= n
and digsum(x) odd, x ∈ Lodd.

Suppose the inductive hypothesis holds for all k < n. Given a string x with |x |= n
and digsum(x) odd, there are four possibilities:
• x starts with an even digit. Then x = aw, and digsum(w) = digsum(x)− a is

odd, so by the inductive hypotehsis w ∈ Lodd, which means that x ∈ Lodd.
• x ends with an even digit. This case is equivalent to the one above but uses the

newly added rule to show that x ∈ Lodd

• x neither starts nor ends with an even digit, and |x |> 1. Then x = awb for odd
a, b, and digsum(w) = digsum(x)− digsum(a)− digsum(b) is odd. Again, this
means that w ∈ Lodd and therefore x ∈ Lodd

• x neither starts nor ends with an even digit, and |x | ≤ 1. The only such strings
with an odd digsum are exactly {1,3,5,7,9}, which are all in Lodd

�

3. Good things come in threes. Give a recursive definition (similar to the definition of Lodd
above) of a language Lbad that does not contain either three 0’s or three 1’s in a row. E.g.,
001101 ∈ Lbad but 10001 is not in Lbad. Explain why your definition is correct but do
not give a formal proof.

Solution: We are going to define two languages, Lbad1 and Lbad0 using a mutually recursive
definition. Lbad1 contains all strings in Lbad that start with 1, and Lbad0 contains all strings
in Lbad that start with 0. We are also going to have ε ∈ Lbad0 and ε ∈ Lbad1.

Definition:

• ε ∈ Lbad0

• ε ∈ Lbad1

• If x ∈ Lbad0, then 1x and 11x are in Lbad1

• If x ∈ Lbad1, then 0x and 00x are in Lbad0

Then Lbad = Lbad1 ∪ Lbad0 �

Each homework assignment will include at least one solved problem, similar to the problems
assigned in that homework, together with the grading rubric we would apply if this problem
appeared on a homework or exam. These model solutions illustrate our recommendations for
structure, presentation, and level of detail in your homework solutions. Of course, the actual
content of your solutions won’t match the model solutions, because your problems are different!

Solved Problems

1. Suppose S is a set of n+ 1 integers. Prove that there exist distinct numbers x , y ∈ S such
that x − y is a multiple of n. Hint:

Solution: We will use the pigeon hole principle. Let the n + 1 numbers in S be
a1, a2, . . . , an+1 and consider b1, b2, . . . , bn+1 where bi = ai mod n. Note that each bi
belongs to the set {0,1, . . . , n−1}. By the pigeon hole principle we must have two numbers
bi and b j, i 6= j such that bi = b j. This implies that ai mod n = a j mod n and hence
ai − a j is divisible by n.

4

CS/ECE 374 Homework 0 Solutions Fall 2019 / Section B

Rubric: 2 points for recognizing that the pigeon hole principle can be used. 2 points
for the idea of using mod n. 6 points for a full correct proof. Any other correct proof
would also fetch 10 points.

�

2. Recall that the reversal wR of a string w is defined recursively as follows:

wR :=

(

ε if w= ε

xR • a if w= a · x

A palindrome is any string that is equal to its reversal, like AMANAPLANACANALPANAMA,
RACECAR, POOP, I, and the empty string.

(a) Give a recursive definition of a palindrome over the alphabet Σ.

(b) Prove w= wR for every palindrome w (according to your recursive definition).

(c) Prove that every string w such that w = wR is a palindrome (according to your
recursive definition).

In parts (b) and (c), you may assume without proof that (x · y)R = yR • xR and (xR)R = x
for all strings x and y .

Solution:

(a) A string w ∈ Σ∗ is a palindrome if and only if either

• w= ε, or
• w= a for some symbol a ∈ Σ, or
• w= axa for some symbol a ∈ Σ and some palindrome x ∈ Σ∗.

Rubric: 2 points = ½ for each base case + 1 for the recursive case. No credit for the
rest of the problem unless this is correct.

(b) Let w be an arbitrary palindrome.
Assume that x = xR for every palindrome x such that |x |< |w|.
There are three cases to consider (mirroring the three cases in the definition):

• If w= ε, then wR = ε by definition, so w= wR.
• If w= a for some symbol a ∈ Σ, then wR = a by definition, so w= wR.
• Suppose w= axa for some symbol a ∈ Σ and some palindrome x ∈ P. Then

wR = (a · x • a)R

= (x • a)R • a by definition of reversal

= aR • xR • a You said we could assume this.

= a • xR • a by definition of reversal
= a • x • a by the inductive hypothesis
= w by assumption

5

CS/ECE 374 Homework 0 Solutions Fall 2019 / Section B

In all three cases, we conclude that w= wR.

Rubric: 4 points: standard induction rubric (scaled)

(c) Let w be an arbitrary string such that w= wR.
Assume that every string x such that |x |< |w| and x = xR is a palindrome.
There are three cases to consider (mirroring the definition of “palindrome”):

• If w= ε, then w is a palindrome by definition.
• If w= a for some symbol a ∈ Σ, then w is a palindrome by definition.
• Otherwise, we have w= ax for some symbol a and some non-empty string x .

The definition of reversal implies that wR = (ax)R = xRa.
Because x is non-empty, its reversal xR is also non-empty.
Thus, xR = b y for some symbol b and some string y .
It follows that wR = b ya, and therefore w= (wR)R = (b ya)R = a yR b.

[At this point, we need to prove that a = b and that y is a palindrome.]

Our assumption that w= wR implies that b ya = a yR b.
The recursive definition of string equality immediately implies a = b.

Because a = b, we have w= a yRa and wR = a ya.
The recursive definition of string equality implies yRa = ya.
It immediately follows that (yRa)R = (ya)R.
Known properties of reversal imply (yRa)R = a(yR)R = a y and (ya)R = a yR.
It follows that a yR = a y , and therefore y = yR.
The inductive hypothesis now implies that y is a palindrome.

We conclude that w is a palindrome by definition.

In all three cases, we conclude that w is a palindrome.

Rubric: 4 points: standard induction rubric (scaled).

• No penalty for jumping from a ya = a yRa directly to y = yR.

�

6

CS/ECE 374 Homework 0 Solutions Fall 2019 / Section B

Rubric (induction): For problems worth 10 points:

+ 1 for explicitly considering an arbitrary object

+ 2 for a valid induction hypothesis

+ 2 for explicit exhaustive case analysis

– No credit here if the case analysis omits an infinite number of objects. (For
example: all odd-length palindromes.)

– −1 if the case analysis omits an finite number of objects. (For example:
the empty string.)

– −1 for making the reader infer the case conditions. Spell them out!

– No penalty if cases overlap (forexample: even length at least 2, odd length
at least 3, and length at most 5.)

+ 1 for cases that do not invoke the inductive hypothesis (“base cases”)

– No credit here if one or more “base cases” are missing.

+ 2 for correctly applying the stated inductive hypothesis

– No credit here for applying a different inductive hypothesis, even if that
different inductive hypothesis would be valid.

+ 2 for other details in cases that invoke the inductive hypothesis (“inductive
cases”)

– No credit here if one or more “inductive cases” are missing.

7

