CS/ECE 374 ♦ Fall 2019 / Section B Momework o

Solutions

- 1. **String digit sums.** Consider strings over the alphabet $\Sigma = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$. We will recursively define the digsum function as follows:
 - digsum(ϵ) = 0
 - digsum(ax) = a + digsum(x), where $a \in \Sigma$ is interpreted as the numeric value of the digit.

For example, digsum(374) = 3 + 7 + 4 = 14

(a) Prove that $digsum(x \cdot y) = digsum(x) + digsum(y)$. You may use the fact that $\#(a, x \cdot y) = \#(a, x) + \#(a, y)$, where #(a, x) is the number of occurences of the symbol a in string x, as discussed in the lecture notes.

Solution: Direct inductive proof. We will prove that for all $n \in \mathbb{N}$, for all strings x with |x| = n, digsum $(x \cdot y) = \text{digsum}(x) + \text{digsum}(y)$.

Base case If |x| = 0 then $x = \epsilon$. This means that $x \cdot y = y$ and digsum(x) = 0, so:

$$\operatorname{digsum}(x \cdot y) = \operatorname{digsum}(y) = 0 + \operatorname{digsum}(y) = \operatorname{digsum}(x) + \operatorname{digsum}(y)$$

Inductive case Suppose that n > 0 and the hypothesis is true for all k < n. Since n > 0, then x = aw for some symbol a and string w with |w| < n. By the recursive definition of concatenation, $x \cdot y = a(w \cdot y)$. Then:

$$\begin{aligned} \operatorname{digsum}(x \cdot y) &= \operatorname{digsum}(a(w \cdot y)) \\ &= a + \operatorname{digsum}(w \cdot y) & \text{by definition of digsum} \\ &= a + \operatorname{digsum}(w) + \operatorname{digsum}(y) & \text{by inductive hypothesis} \\ &= \operatorname{digsum}(aw) + \operatorname{digsum}(y) & \text{by definition of digsum} \\ &= \operatorname{digsum}(x) + \operatorname{digsum}(y) \end{aligned}$$

Alternate solution. We can instead prove this by using the theorem about concatenation of counts:

$$\#(a, x \cdot y) = \#(a, x) + \#(a, y)$$

We will first prove the following lemma:

$$\operatorname{digsum}(x) = \sum_{i=1}^{9} i \times \#(i, x)$$

Proof. We will prove by induction that for all $n \in \mathbb{N}$ the lemma is true for all x with |x| = n.

Base case. If n = 0 then |x| = 0 and $x = \epsilon$. Then digsum(x) = 0 = #(i, x) for any $i \in 1, ... 9$.

Inductive case. Suppose n > 0 and the inductive hypothesis is true for all k < n. Then x = aw for some symbol a and string w. We note that #(i, a) = 0 for $i \neq a$ and #(a, a) = 1, therefore $\sum_{i=1}^{9} i \times \#(i, a) = a$.

$$\begin{aligned} \operatorname{digsum}(x) &= \operatorname{digsum}(aw) \\ &= a + \operatorname{digsum}(w) & \text{by definition of digsum} \\ &= a + \sum_{i=1}^{9} i \times \#(i, w) & \text{by inductive hypothesis} \\ &= \sum_{i=1}^{9} i \#(i, a) + \sum_{i=1}^{9} i \times \#(i, w) & \text{by observation abbove} \\ &= \sum_{i=1}^{9} i \times (\#(i, a) + \#(i, w)) & \text{collecting terms} \\ &= \sum_{i=1}^{9} i \times \#(i, aw) & \text{by concatenation of counts} \\ &= \sum_{i=1}^{9} i \times \#(i, x) \end{aligned}$$

This proves the lemma. We now have:

$$\begin{aligned} \operatorname{digsum}(x \cdot y) &= \sum_{i=1}^{9} i \times \#(i, x \cdot y) & \text{by lemma} \\ &= \sum_{i=1}^{9} i \times (\#(i, x)) + \#(i, y)) & \text{by concatenation of counts} \\ &= \sum_{i=1}^{9} i \times (\#(i, x)) + \sum_{i=1}^{9} i \times (\#(i, y)) & \text{expanding} \\ &= \operatorname{digsum}(x) + \operatorname{digsum}(y) & \text{by lemma} \end{aligned}$$

(b) Prove that $digsum(x^R) = digsum(x)$. You can use any of the results proved in lab 1 in this proof.

Solution: We can prove this by induction; i.e., for all $n \in \mathbb{N}$ for all x with |x| = n, digsum $(x) = \text{digsum}(x^R)$.

Base case. If n = 0 then $x = \epsilon$ and $x = x^R$, so the result follows.

Inductive case. Suppose n > 0 and for all k < n the result holds. We have $x = a \cdot w$, with $x^R = w^R \cdot a$. By definition of digsum, digsum(x) = a + digsum(w). On the other hand:

2

```
\begin{aligned} \operatorname{digsum}(x^R) &= \operatorname{digsum}(w^R \cdot a) \\ &= \operatorname{digsum}(w^R) + \operatorname{digsum}(a) & \text{by part (a)} \\ &= \operatorname{digsum}(w) + \operatorname{digsum}(a) & \text{by the inductive hypothesis} \\ &= a + \operatorname{digsum}(w) \end{aligned}
```

2. **Just can't even.** Consider a language L_{odd} defined as follows:

```
• a \in L_{\text{odd}} for a \in \{1, 3, 5, 7, 9\}
```

- $ax \in L_{odd}$ for $a \in \{0, 2, 4, 6, 8\}$ and $x \in L_{odd}$
- $axb \in L_{odd}$ for $a, b \in \{1, 3, 5, 7, 9\}$ and $x \in L_{odd}$
- (a) Prove that **374** is *not* in L_{odd}

Solution: If **374** is in L_{odd} then it must correspond to one of the three recursive definition rules. We can eliminate each possibility in turn:

- $374 \neq a$ for any $ain\{1, 3, 5, 7, 9\}$
- $374 \neq ax$ for any $a \in \{0, 2, 4, 6, 8\}$ since $3 \notin \{0, 2, 4, 6, 8\}$.
- $374 \neq axb$ for any $b \in \{1, 3, 5, 7, 9\}$ since $4 \notin \{1, 3, 5, 7, 9\}$.

(b) Prove that for any $x \in L_{\text{odd}}$, digsum(x) is odd.

Solution: Again we will prove this inductively: for any $n \in \mathbb{N}$, for any $x \in L_{\text{odd}}$ with |x| = n, digsum(x) is odd.

Since L_{odd} does not contain ϵ we can make n=1 be our base case. In that case, x=a for some $a \in \{1,3,5,7,9\}$. Clearly digsum(x)=digsum(a) is odd in that case.

For the inductive case, suppose that n > 1 and for k < n, all $x \in L_{\text{odd}}$ with |x| = k have an odd digsum. Consider $x \in L_{\text{odd}}$ with |x| = n. Then either:

- x = aw for a in $\{0, 2, 4, 6, 8\}$ and $w \in L_{odd}$. digsum(w) is odd by the inductive hypothesis and a is even, therefore digsum(x) = a + digsum(w) is odd.
- x = awb for $a, b \in \{1, 3, 5, 7, 9\}$ and $w \in L_{\text{odd}}$. Again digsum(w) is odd by the inductive hypothesis. Using question 1, we can see that digsum(awb) = digsum(a) + digsum(w) + digsum(a). digsum(a) and digsum(a) are both going to be even so digsum(awb) is odd.

(c) (Not for submission) Prove that any string with digsum(x) odd is in L_{odd} .

Solution: As pointed out on Piazza, this is false since the string 34 is not in L_{odd} . We would need to fix the definition to include a fourth recursive rule:

• $xa \in L_{\text{odd}}$ for any $x \in L_{\text{odd}}$ and $a \in \{0, 2, 4, 6, 8\}$

With this rule, we can prove by induction that for any $n \in \mathbb{N}$, for any x with |x| = n and digsum(x) odd, $x \in L_{\text{odd}}$.

Suppose the inductive hypothesis holds for all k < n. Given a string x with |x| = n and digsum(x) odd, there are four possibilities:

- x starts with an even digit. Then x = aw, and digsum(w) = digsum(x) a is odd, so by the inductive hypotehsis $w \in L_{\text{odd}}$, which means that $x \in L_{\text{odd}}$.
- x ends with an even digit. This case is equivalent to the one above but uses the newly added rule to show that $x \in L_{\text{odd}}$
- x neither starts nor ends with an even digit, and |x| > 1. Then x = awb for odd a, b, and digsum(w) = digsum(x) digsum(a) digsum(b) is odd. Again, this means that $w \in L_{\text{odd}}$ and therefore $x \in L_{\text{odd}}$
- x neither starts nor ends with an even digit, and $|x| \le 1$. The only such strings with an odd digsum are exactly $\{1, 3, 5, 7, 9\}$, which are all in L_{odd}
- 3. Good things come in threes. Give a recursive definition (similar to the definition of L_{odd} above) of a language L_{bad} that does not contain either three 0's or three 1's in a row. E.g., 001101 ∈ L_{bad} but 10001 is not in L_{bad}. Explain why your definition is correct but do not give a formal proof.

Solution: We are going to define two languages, L_{bad1} and L_{bad0} using a mutually recursive definition. L_{bad1} contains all strings in L_{bad} that start with 1, and L_{bad0} contains all strings in L_{bad} that start with 0. We are also going to have $\epsilon \in L_{\text{bad0}}$ and $\epsilon \in L_{\text{bad1}}$.

Definition:

- ϵ ∈ L_{bad0}
- ϵ ∈ L_{bad1}
- If $x \in L_{bad0}$, then $\mathbf{1}x$ and $\mathbf{11}x$ are in L_{bad1}
- If $x \in L_{\text{bad1}}$, then 0x and 00x are in L_{bad0}

Then $L_{\text{bad}} = L_{\text{bad}1} \cup L_{\text{bad}0}$

Each homework assignment will include at least one solved problem, similar to the problems assigned in that homework, together with the grading rubric we would apply *if* this problem appeared on a homework or exam. These model solutions illustrate our recommendations for structure, presentation, and level of detail in your homework solutions. Of course, the actual *content* of your solutions won't match the model solutions, because your problems are different!

Solved Problems

1. Suppose *S* is a set of n+1 integers. Prove that there exist distinct numbers $x, y \in S$ such that x-y is a multiple of n. *Hint*:

Solution: We will use the pigeon hole principle. Let the n+1 numbers in S be a_1,a_2,\ldots,a_{n+1} and consider b_1,b_2,\ldots,b_{n+1} where $b_i=a_i \mod n$. Note that each b_i belongs to the set $\{0,1,\ldots,n-1\}$. By the pigeon hole principle we must have two numbers b_i and b_j , $i \neq j$ such that $b_i=b_j$. This implies that $a_i \mod n=a_j \mod n$ and hence a_i-a_j is divisible by n.

Rubric: 2 points for recognizing that the pigeon hole principle can be used. 2 points for the idea of using $\mod n$. 6 points for a full correct proof. Any other correct proof would also fetch 10 points.

2. Recall that the *reversal* w^R of a string w is defined recursively as follows:

$$w^{R} := \begin{cases} \varepsilon & \text{if } w = \varepsilon \\ x^{R} \bullet a & \text{if } w = a \cdot x \end{cases}$$

A *palindrome* is any string that is equal to its reversal, like **AMANAPLANACANALPANAMA**, **RACECAR**, **POOP**, **I**, and the empty string.

- (a) Give a recursive definition of a palindrome over the alphabet Σ .
- (b) Prove $w = w^R$ for every palindrome w (according to your recursive definition).
- (c) Prove that every string w such that $w = w^R$ is a palindrome (according to your recursive definition).

In parts (b) and (c), you may assume without proof that $(x \cdot y)^R = y^R \cdot x^R$ and $(x^R)^R = x$ for all strings x and y.

Solution:

- (a) A string $w \in \Sigma^*$ is a palindrome if and only if either
 - $w = \varepsilon$, or
 - w = a for some symbol $a \in \Sigma$, or
 - w = axa for some symbol $a \in \Sigma$ and some palindrome $x \in \Sigma^*$.

Rubric: 2 points = $\frac{1}{2}$ for each base case + 1 for the recursive case. No credit for the rest of the problem unless this is correct.

(b) Let *w* be an arbitrary palindrome.

Assume that $x = x^R$ for every palindrome x such that |x| < |w|.

There are three cases to consider (mirroring the three cases in the definition):

- If $w = \varepsilon$, then $w^R = \varepsilon$ by definition, so $w = w^R$.
- If w = a for some symbol $a \in \Sigma$, then $w^R = a$ by definition, so $w = w^R$.
- Suppose w = axa for some symbol $a \in \Sigma$ and some palindrome $x \in P$. Then

$$w^R = (a \cdot x \cdot a)^R$$

 $= (x \cdot a)^R \cdot a$ by definition of reversal
 $= a^R \cdot x^R \cdot a$ You said we could assume this.
 $= a \cdot x^R \cdot a$ by definition of reversal
 $= a \cdot x \cdot a$ by the inductive hypothesis
 $= w$ by assumption

In all three cases, we conclude that $w = w^R$.

Rubric: 4 points: standard induction rubric (scaled)

(c) Let w be an arbitrary string such that $w = w^R$.

Assume that every string x such that |x| < |w| and $x = x^R$ is a palindrome.

There are three cases to consider (mirroring the definition of "palindrome"):

- If $w = \varepsilon$, then w is a palindrome by definition.
- If w = a for some symbol $a \in \Sigma$, then w is a palindrome by definition.
- Otherwise, we have w = ax for some symbol a and some *non-empty* string x. The definition of reversal implies that $w^R = (ax)^R = x^R a$. Because x is non-empty, its reversal x^R is also non-empty.

Thus, $x^R = by$ for some symbol b and some string y.

It follows that $w^R = bya$, and therefore $w = (w^R)^R = (bya)^R = ay^Rb$.

[At this point, we need to prove that a = b and that y is a palindrome.]

Our assumption that $w = w^R$ implies that $bya = ay^Rb$.

The recursive definition of string equality immediately implies a = b.

Because a = b, we have $w = ay^R a$ and $w^R = aya$.

The recursive definition of string equality implies $y^R a = ya$.

It immediately follows that $(y^R a)^R = (ya)^R$.

Known properties of reversal imply $(y^R a)^R = a(y^R)^R = ay$ and $(ya)^R = ay^R$.

It follows that $ay^R = ay$, and therefore $y = y^R$.

The inductive hypothesis now implies that y is a palindrome.

We conclude that *w* is a palindrome by definition.

In all three cases, we conclude that *w* is a palindrome.

Rubric: 4 points: standard induction rubric (scaled).

• No penalty for jumping from $aya = ay^Ra$ directly to $y = y^R$.

Rubric (induction): For problems worth 10 points:

- + 1 for explicitly considering an *arbitrary* object
- + 2 for a valid induction hypothesis
- + 2 for explicit exhaustive case analysis
 - No credit here if the case analysis omits an infinite number of objects. (For example: all odd-length palindromes.)
 - -1 if the case analysis omits an finite number of objects. (For example: the empty string.)
 - -1 for making the reader infer the case conditions. Spell them out!
 - No penalty if cases overlap (forexample: even length at least 2, odd length at least 3, and length at most 5.)
- + 1 for cases that do not invoke the inductive hypothesis ("base cases")
 - No credit here if one or more "base cases" are missing.
- + 2 for correctly applying the *stated* inductive hypothesis
 - No credit here for applying a different inductive hypothesis, even if that different inductive hypothesis would be valid.
- + 2 for other details in cases that invoke the inductive hypothesis ("inductive cases")
 - No credit here if one or more "inductive cases" are missing.