CS/ECE 374 \& Fall 2019 / Section B ค Homework 0 ~

Solutions

1. String digit sums. Consider strings over the alphabet $\Sigma=\{0,1,2,3,4,5,6,7,8,9\}$. We will recursively define the digsum function as follows:

- $\operatorname{digsum}(\epsilon)=0$
- $\operatorname{digsum}(a x)=a+\operatorname{digsum}(x)$, where $a \in \Sigma$ is interpreted as the numeric value of the digit.

For example, digsum(374) $=3+7+4=14$
(a) Prove that $\operatorname{digsum}(x \cdot y)=\operatorname{digsum}(x)+\operatorname{digsum}(y)$. You may use the fact that $\#(a, x \cdot y)=\#(a, x)+\#(a, y)$, where $\#(a, x)$ is the number of occurences of the symbol a in string x, as discussed in the lecture notes.

Solution: Direct inductive proof. We will prove that for all $n \in \mathbb{N}$, for all strings x with $|x|=n$, $\operatorname{digsum}(x \cdot y)=\operatorname{digsum}(x)+\operatorname{digsum}(y)$.

Base case If $|x|=0$ then $x=\epsilon$. This means that $x \cdot y=y$ and $\operatorname{digsum}(x)=0$, so:

$$
\operatorname{digsum}(x \cdot y)=\operatorname{digsum}(y)=0+\operatorname{digsum}(y)=\operatorname{digsum}(x)+\operatorname{digsum}(y)
$$

Inductive case Suppose that $n>0$ and the hypothesis is true for all $k<n$. Since $n>0$, then $x=a w$ for some symbol a and string w with $|w|<n$. By the recursive definition of concatenation, $x \cdot y=a(w \cdot y)$. Then:

$$
\begin{aligned}
\operatorname{digsum}(x \cdot y) & =\operatorname{digsum}(a(w \cdot y)) & & \\
& =a+\operatorname{digsum}(w \cdot y) & & \text { by definition of digsum } \\
& =a+\operatorname{digsum}(w)+\operatorname{digsum}(y) & & \text { by inductive hypothesis } \\
& =\operatorname{digsum}(a w)+\operatorname{digsum}(y) & & \text { by definition of digsum } \\
& =\operatorname{digsum}(x)+\operatorname{digsum}(y) & &
\end{aligned}
$$

Alternate solution. We can instead prove this by using the theorem about concatenation of counts:

$$
\#(a, x \cdot y)=\#(a, x)+\#(a, y)
$$

We will first prove the following lemma:

$$
\operatorname{digsum}(x)=\sum_{i=1}^{9} i \times \#(i, x)
$$

Proof. We will prove by induction that for all $n \in \mathbb{N}$ the lemma is true for all x with $|x|=n$.

Base case. If $n=0$ then $|x|=0$ and $x=\epsilon$. Then digsum $(x)=0=\#(i, x)$ for any $i \in 1, \ldots 9$.

Inductive case. Suppose $n>0$ and the inductive hypothesis is true for all $k<n$. Then $x=a w$ for some symbol a and string w. We note that $\#(i, a)=0$ for $i \neq a$ and $\#(a, a)=1$, therefore $\sum_{i=1}^{9} i \times \#(i, a)=a$.

$$
\begin{array}{rlr}
\operatorname{digsum}(x) & =\operatorname{digsum}(a w) & \text { by definition of digsum } \\
& =a+\operatorname{digsum}(w) & \text { by inductive hypothesis } \\
& =a+\sum_{i=1}^{9} i \times \#(i, w) & \\
& =\sum_{i=1}^{9} i \#(i, a)+\sum_{i=1}^{9} i \times \#(i, w) & \text { by observation abbove } \\
& =\sum_{i=1}^{9} i \times(\#(i, a)+\#(i, w)) & \\
& =\sum_{i=1}^{9} i \times \#(i, a w) & \text { collecting terms } \\
& =\sum_{i=1}^{9} i \times \#(i, x) &
\end{array}
$$

This proves the lemma. We now have:

$$
\begin{array}{rlr}
\operatorname{digsum}(x \cdot y) & =\sum_{i=1}^{9} i \times \#(i, x \cdot y) & \text { by lemma } \\
& \left.=\sum_{i=1}^{9} i \times(\#(i, x))+\#(i, y)\right) & \text { by concatenation of counts } \\
& =\sum_{i=1}^{9} i \times(\#(i, x))+\sum_{i=1}^{9} i \times(\#(i, y)) & \text { expanding } \\
& =\operatorname{digsum}(x)+\operatorname{digsum}(y) & \text { by lemma }
\end{array}
$$

(b) Prove that digsum $\left(x^{R}\right)=\operatorname{digsum}(x)$. You can use any of the results proved in lab 1 in this proof.

Solution: We can prove this by induction; i.e., for all $n \in \mathbb{N}$ for all x with $|x|=n$, $\operatorname{digsum}(x)=\operatorname{digsum}\left(x^{R}\right)$.

Base case. If $n=0$ then $x=\epsilon$ and $x=x^{R}$, so the result follows.
Inductive case. Suppose $n>0$ and for all $k<n$ the result holds. We have $x=a \cdot w$, with $x^{R}=w^{R} \cdot a$. By definition of digsum, digsum $(x)=a+\operatorname{digsum}(w)$. On the other hand:

$$
\begin{array}{rlr}
\operatorname{digsum}\left(x^{R}\right) & =\operatorname{digsum}\left(w^{R} \cdot a\right) & \\
& =\operatorname{digsum}\left(w^{R}\right)+\operatorname{digsum}(a) & \text { by part }(a) \\
& =\operatorname{digsum}(w)+\operatorname{digsum}(a) & \text { by the inductive hypothesis } \\
& =a+\operatorname{digsum}(w) &
\end{array}
$$

2. Just can't even. Consider a language $L_{\text {odd }}$ defined as follows:

- $a \in L_{\text {odd }}$ for $a \in\{1,3,5,7,9\}$
- $a x \in L_{\text {odd }}$ for $a \in\{0,2,4,6,8\}$ and $x \in L_{\text {odd }}$
- $a x b \in L_{\text {odd }}$ for $a, b \in\{1,3,5,7,9\}$ and $x \in L_{\text {odd }}$
(a) Prove that 374 is not in $L_{\text {odd }}$

Solution: If 374 is in $L_{\text {odd }}$ then it must correspond to one of the three recursive definition rules. We can eliminate each possibility in turn:

- $374 \neq a$ for any $\operatorname{ain}\{1,3,5,7,9\}$
- $374 \neq a x$ for any $a \in\{0,2,4,6,8\}$ since $3 \notin\{0,2,4,6,8\}$.
- $374 \neq a x b$ for any $b \in\{1,3,5,7,9\}$ since $4 \notin\{1,3,5,7,9\}$.
(b) Prove that for any $x \in L_{\text {odd }}$, digsum (x) is odd.

Solution: Again we will prove this inductively: for any $n \in \mathbb{N}$, for any $x \in L_{\text {odd }}$ with $|x|=n$, digsum (x) is odd.

Since $L_{\text {odd }}$ does not contain ϵ we can make $n=1$ be our base case. In that case, $x=a$ for some $a \in\{1,3,5,7,9\}$. Clearly $\operatorname{digsum}(x)=\operatorname{digsum}(a)$ is odd in that case.

For the inductive case, suppose that $n>1$ and for $k<n$, all $x \in L_{\text {odd }}$ with $|x|=k$ have an odd digsum. Consider $x \in L_{\text {odd }}$ with $|x|=n$. Then either:

- $x=a w$ for a in $\{0,2,4,6,8\}$ and $w \in L_{\text {odd }}$. digsum (w) is odd by the inductive hypothesis and a is even, therefore digsum $(x)=a+\operatorname{digsum}(w)$ is odd.
- $x=a w b$ for $a, b \in\{1,3,5,7,9\}$ and $w \in L_{\text {odd }}$. Again digsum(w) is odd by the inductive hypothesis. Using question 1 , we can see that digsum $(a w b)=$ digsum $(a)+\operatorname{digsum}(w)+\operatorname{digsum}(b)$. digsum (a) and digsum (b) are both going to be even so digsum ($a w b$) is odd.
(c) (Not for submission) Prove that any string with digsum (x) odd is in $L_{\text {odd }}$.

Solution: As pointed out on Piazza, this is false since the string 34 is not in $L_{\text {odd }}$. We would need to fix the definition to include a fourth recursive rule:

- $x a \in L_{\text {odd }}$ for any $x \in L_{\text {odd }}$ and $a \in\{0,2,4,6,8\}$

With this rule, we can prove by induction that for any $n \in \mathbb{N}$, for any x with $|x|=n$ and digsum (x) odd, $x \in L_{\text {odd }}$.

Suppose the inductive hypothesis holds for all $k<n$. Given a string x with $|x|=n$ and digsum (x) odd, there are four possibilities:

- x starts with an even digit. Then $x=a w$, and $\operatorname{digsum}(w)=\operatorname{digsum}(x)-a$ is odd, so by the inductive hypotehsis $w \in L_{\text {odd }}$, which means that $x \in L_{\text {odd }}$.
- x ends with an even digit. This case is equivalent to the one above but uses the newly added rule to show that $x \in L_{\text {odd }}$
- x neither starts nor ends with an even digit, and $|x|>1$. Then $x=a w b$ for odd a, b, and $\operatorname{digsum}(w)=\operatorname{digsum}(x)-\operatorname{digsum}(a)-\operatorname{digsum}(b)$ is odd. Again, this means that $w \in L_{\text {odd }}$ and therefore $x \in L_{\text {odd }}$
- x neither starts nor ends with an even digit, and $|x| \leq 1$. The only such strings with an odd digsum are exactly $\{1,3,5,7,9\}$, which are all in $L_{\text {odd }}$

3. Good things come in threes. Give a recursive definition (similar to the definition of $L_{\text {odd }}$ above) of a language L_{bad} that does not contain either three 0's or three 1's in a row. E.g., $001101 \in L_{\text {bad }}$ but 10001 is not in $L_{\text {bad }}$. Explain why your definition is correct but do not give a formal proof.

Solution: We are going to define two languages, $L_{\text {bad1 }}$ and $L_{\text {bado }}$ using a mutually recursive definition. $L_{\text {bad } 1}$ contains all strings in $L_{\text {bad }}$ that start with 1, and $L_{\text {bado }}$ contains all strings in $L_{\text {bad }}$ that start with o. We are also going to have $\epsilon \in L_{\text {bad } 0}$ and $\epsilon \in L_{\text {bad } 1}$.

Definition:

- $\epsilon \in L_{\text {bado }}$
- $\epsilon \in L_{\mathrm{bad} 1}$
- If $x \in L_{\text {bado }}$, then $1 x$ and $11 x$ are in $L_{\text {bad }}$
- If $x \in L_{\text {bad1 }}$, then $0 x$ and $00 x$ are in $L_{\text {bado }}$

Then $L_{\text {bad }}=L_{\text {bad1 }} \cup L_{\text {bado }}$

Each homework assignment will include at least one solved problem, similar to the problems assigned in that homework, together with the grading rubric we would apply if this problem appeared on a homework or exam. These model solutions illustrate our recommendations for structure, presentation, and level of detail in your homework solutions. Of course, the actual content of your solutions won't match the model solutions, because your problems are different!

Solved Problems

1. Suppose S is a set of $n+1$ integers. Prove that there exist distinct numbers $x, y \in S$ such that $x-y$ is a multiple of n. Hint:

Solution: We will use the pigeon hole principle. Let the $n+1$ numbers in S be $a_{1}, a_{2}, \ldots, a_{n+1}$ and consider $b_{1}, b_{2}, \ldots, b_{n+1}$ where $b_{i}=a_{i} \bmod n$. Note that each b_{i} belongs to the set $\{0,1, \ldots, n-1\}$. By the pigeon hole principle we must have two numbers b_{i} and $b_{j}, i \neq j$ such that $b_{i}=b_{j}$. This implies that $a_{i} \bmod n=a_{j} \bmod n$ and hence $a_{i}-a_{j}$ is divisible by n.

Rubric: 2 points for recognizing that the pigeon hole principle can be used. 2 points for the idea of using $\bmod n .6$ points for a full correct proof. Any other correct proof would also fetch 10 points.
2. Recall that the reversal \boldsymbol{w}^{R} of a string w is defined recursively as follows:

$$
w^{R}:= \begin{cases}\varepsilon & \text { if } w=\varepsilon \\ x^{R} \cdot a & \text { if } w=a \cdot x\end{cases}
$$

A palindrome is any string that is equal to its reversal, like AMANAPLANACANALPANAMA, RACECAR, POOP, I, and the empty string.
(a) Give a recursive definition of a palindrome over the alphabet Σ.
(b) Prove $w=w^{R}$ for every palindrome w (according to your recursive definition).
(c) Prove that every string w such that $w=w^{R}$ is a palindrome (according to your recursive definition).

In parts (b) and (c), you may assume without proof that $(x \cdot y)^{R}=y^{R} \cdot x^{R}$ and $\left(x^{R}\right)^{R}=x$ for all strings x and y.

Solution:

(a) A string $w \in \Sigma^{*}$ is a palindrome if and only if either

- $w=\varepsilon$, or
- $w=a$ for some symbol $a \in \Sigma$, or
- $w=a x a$ for some symbol $a \in \Sigma$ and some palindrome $x \in \Sigma^{*}$.

Rubric: 2 points $=1 / 2$ for each base case +1 for the recursive case. No credit for the rest of the problem unless this is correct.
(b) Let w be an arbitrary palindrome.

Assume that $x=x^{R}$ for every palindrome x such that $|x|<|w|$.
There are three cases to consider (mirroring the three cases in the definition):

- If $w=\varepsilon$, then $w^{R}=\varepsilon$ by definition, so $w=w^{R}$.
- If $w=a$ for some symbol $a \in \Sigma$, then $w^{R}=a$ by definition, so $w=w^{R}$.
- Suppose $w=$ axa for some symbol $a \in \Sigma$ and some palindrome $x \in P$. Then

$$
\begin{aligned}
w^{R} & =(a \cdot x \cdot a)^{R} \\
& =(x \cdot a)^{R} \cdot a \\
& =a^{R} \cdot x^{R} \cdot a \\
& =a \cdot x^{R} \cdot a \\
& =a \cdot x \cdot a \\
& =w
\end{aligned}
$$

$$
=(x \cdot a)^{R} \cdot a \quad \text { by definition of reversal }
$$

$$
=a^{R} \cdot x^{R} \cdot a \quad \text { You said we could assume this. }
$$

$$
=a \cdot x^{R} \cdot a \quad \text { by definition of reversal }
$$ by the inductive hypothesis by assumption

In all three cases, we conclude that $w=w^{R}$.
Rubric: 4 points: standard induction rubric (scaled)
(c) Let w be an arbitrary string such that $w=w^{R}$.

Assume that every string x such that $|x|<|w|$ and $x=x^{R}$ is a palindrome.
There are three cases to consider (mirroring the definition of "palindrome"):

- If $w=\varepsilon$, then w is a palindrome by definition.
- If $w=a$ for some symbol $a \in \Sigma$, then w is a palindrome by definition.
- Otherwise, we have $w=a x$ for some symbol a and some non-empty string x.

The definition of reversal implies that $w^{R}=(a x)^{R}=x^{R} a$.
Because x is non-empty, its reversal x^{R} is also non-empty.
Thus, $x^{R}=b y$ for some symbol b and some string y.
It follows that $w^{R}=b y a$, and therefore $w=\left(w^{R}\right)^{R}=(b y a)^{R}=a y^{R} b$.
[At this point, we need to prove that $a=b$ and that y is a palindrome.]
Our assumption that $w=w^{R}$ implies that bya $=a y^{R} b$.
The recursive definition of string equality immediately implies $a=b$.
Because $a=b$, we have $w=a y^{R} a$ and $w^{R}=a y a$.
The recursive definition of string equality implies $y^{R} a=y a$.
It immediately follows that $\left(y^{R} a\right)^{R}=(y a)^{R}$.
Known properties of reversal imply $\left(y^{R} a\right)^{R}=a\left(y^{R}\right)^{R}=a y$ and $(y a)^{R}=a y^{R}$.
It follows that $a y^{R}=a y$, and therefore $y=y^{R}$.
The inductive hypothesis now implies that y is a palindrome.
We conclude that w is a palindrome by definition.
In all three cases, we conclude that w is a palindrome.

Rubric: 4 points: standard induction rubric (scaled).

- No penalty for jumping from $a y a=a y^{R} a$ directly to $y=y^{R}$.

Rubric (induction): For problems worth 10 points:
+1 for explicitly considering an arbitrary object
+2 for a valid induction hypothesis
+2 for explicit exhaustive case analysis

- No credit here if the case analysis omits an infinite number of objects. (For example: all odd-length palindromes.)
- -1 if the case analysis omits an finite number of objects. (For example: the empty string.)
- -1 for making the reader infer the case conditions. Spell them out!
- No penalty if cases overlap (forexample: even length at least 2, odd length at least 3, and length at most 5.)
+ 1 for cases that do not invoke the inductive hypothesis ("base cases")
- No credit here if one or more "base cases" are missing.
+2 for correctly applying the stated inductive hypothesis
- No credit here for applying a different inductive hypothesis, even if that different inductive hypothesis would be valid.
+2 for other details in cases that invoke the inductive hypothesis ("inductive cases")
- No credit here if one or more "inductive cases" are missing.

