CS/ECE 374 ♦ Fall 2019 / Section B Momework o

Due Tuesday, September 2, 2019 at 8pm

- Each student must submit individual solutions for this homework. For all future homeworks, groups of up to three students can submit joint solutions.
- You may use any source at your disposal—paper, electronic, or human—but you *must* cite *every* source that you use, and you *must* write everything yourself in your own words. See the academic integrity policies on the course web site for more details.
- There is no "I Don't Know (IDK)" policy in this section. (If you don't know what the "I Don't Know" policy is, you do not need to worry about it.)
- 1. **String digit sums.** Consider strings over the alphabet $\Sigma = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$. We will recursively define the digsum function as follows:
 - digsum(ϵ) = 0
 - digsum(ax) = a + digsum(x), where a ∈ Σ is interpreted as the numeric value of the digit.

For example, digsum(374) = 3 + 7 + 4 = 14

- (a) Prove that $digsum(x \cdot y) = digsum(x) + digsum(y)$. You may use the fact that $\#(a, x \cdot y) = \#(a, x) + \#(a, y)$, where #(a, x) is the number of occurrences of the symbol a in string x, as discussed in the lecture notes.
- (b) Prove that $digsum(x^R) = digsum(x)$. You can use any of the results proved in lab 1 in this proof.
- 2. **Just can't even.** Consider a language L_{odd} defined as follows:
 - $a \in L_{\text{odd}}$ for $a \in \{1, 3, 5, 7, 9\}$
 - $ax \in L_{odd}$ for $a \in \{0, 2, 4, 6, 8\}$ and $x \in L_{odd}$
 - $axb \in L_{odd}$ for $a, b \in \{1, 3, 5, 7, 9\}$ and $x \in L_{odd}$
 - (a) Prove that **374** is not in L_{odd}
 - (b) Prove that for any $x \in L_{\text{odd}}$, digsum(x) is odd.
 - (c) (Not for submission) Prove that any string with digsum(x) odd is in L.
- 3. Good things come in threes. Give a recursive definition (similar to the definition of L_{odd} above) of a language L_{bad} that does not contain either three 0's or three 1's in a row. E.g., 001101 ∈ L_{bad} but 10001 is not in L_{bad}. Explain why your definition is correct but do not give a formal proof.

Each homework assignment will include at least one solved problem, similar to the problems assigned in that homework, together with the grading rubric we would apply *if* this problem appeared on a homework or exam. These model solutions illustrate our recommendations for structure, presentation, and level of detail in your homework solutions. Of course, the actual *content* of your solutions won't match the model solutions, because your problems are different!

Solved Problems

1. Suppose *S* is a set of n+1 integers. Prove that there exist distinct numbers $x, y \in S$ such that x-y is a multiple of n. *Hint*:

Solution: We will use the pigeon hole principle. Let the n+1 numbers in S be a_1,a_2,\ldots,a_{n+1} and consider b_1,b_2,\ldots,b_{n+1} where $b_i=a_i \mod n$. Note that each b_i belongs to the set $\{0,1,\ldots,n-1\}$. By the pigeon hole principle we must have two numbers b_i and b_j , $i\neq j$ such that $b_i=b_j$. This implies that $a_i \mod n=a_j \mod n$ and hence a_i-a_j is divisible by n.

Rubric: 2 points for recognizing that the pigeon hole principle can be used. 2 points for the idea of using $\mod n$. 6 points for a full correct proof. Any other correct proof would also fetch 10 points.

2. Recall that the **reversal** w^R of a string w is defined recursively as follows:

$$w^{R} := \begin{cases} \varepsilon & \text{if } w = \varepsilon \\ x^{R} \bullet a & \text{if } w = a \cdot x \end{cases}$$

A *palindrome* is any string that is equal to its reversal, like AMANAPLANACANALPANAMA, RACECAR, POOP, I, and the empty string.

- (a) Give a recursive definition of a palindrome over the alphabet Σ .
- (b) Prove $w = w^R$ for every palindrome w (according to your recursive definition).
- (c) Prove that every string w such that $w = w^R$ is a palindrome (according to your recursive definition).

In parts (b) and (c), you may assume without proof that $(x \cdot y)^R = y^R \cdot x^R$ and $(x^R)^R = x$ for all strings x and y.

Solution:

- (a) A string $w \in \Sigma^*$ is a palindrome if and only if either
 - $w = \varepsilon$, or
 - w = a for some symbol $a \in \Sigma$, or
 - w = axa for some symbol $a \in \Sigma$ and some palindrome $x \in \Sigma^*$.

Rubric: 2 points = $\frac{1}{2}$ for each base case + 1 for the recursive case. No credit for the rest of the problem unless this is correct.

(b) Let *w* be an arbitrary palindrome.

Assume that $x = x^R$ for every palindrome x such that |x| < |w|.

There are three cases to consider (mirroring the three cases in the definition):

• If $w = \varepsilon$, then $w^R = \varepsilon$ by definition, so $w = w^R$.

- If w = a for some symbol $a \in \Sigma$, then $w^R = a$ by definition, so $w = w^R$.
- Suppose w = axa for some symbol $a \in \Sigma$ and some palindrome $x \in P$. Then

$$w^R = (a \cdot x \cdot a)^R$$

 $= (x \cdot a)^R \cdot a$ by definition of reversal
 $= a^R \cdot x^R \cdot a$ You said we could assume this.
 $= a \cdot x^R \cdot a$ by definition of reversal
 $= a \cdot x \cdot a$ by the inductive hypothesis
 $= w$ by assumption

In all three cases, we conclude that $w = w^R$.

Rubric: 4 points: standard induction rubric (scaled)

(c) Let w be an arbitrary string such that $w = w^R$.

Assume that every string x such that |x| < |w| and $x = x^R$ is a palindrome. There are three cases to consider (mirroring the definition of "palindrome"):

- If $w = \varepsilon$, then w is a palindrome by definition.
- If w = a for some symbol $a \in \Sigma$, then w is a palindrome by definition.
- Otherwise, we have w = ax for some symbol a and some *non-empty* string x. The definition of reversal implies that $w^R = (ax)^R = x^R a$.

Because x is non-empty, its reversal x^R is also non-empty.

Thus, $x^R = by$ for some symbol b and some string y.

It follows that $w^R = bya$, and therefore $w = (w^R)^R = (bya)^R = ay^Rb$.

[At this point, we need to prove that a = b and that y is a palindrome.]

Our assumption that $w = w^R$ implies that $bya = ay^Rb$.

The recursive definition of string equality immediately implies a = b.

Because a = b, we have $w = ay^R a$ and $w^R = aya$.

The recursive definition of string equality implies $y^R a = ya$.

It immediately follows that $(y^R a)^R = (ya)^R$.

Known properties of reversal imply $(y^R a)^R = a(y^R)^R = ay$ and $(ya)^R = ay^R$.

It follows that $ay^R = ay$, and therefore $y = y^R$.

The inductive hypothesis now implies that \boldsymbol{y} is a palindrome.

We conclude that w is a palindrome by definition.

In all three cases, we conclude that w is a palindrome.

Rubric: 4 points: standard induction rubric (scaled).

• No penalty for jumping from $aya = ay^Ra$ directly to $y = y^R$.

Rubric (induction): For problems worth 10 points:

- + 1 for explicitly considering an *arbitrary* object
- + 2 for a valid induction hypothesis
- + 2 for explicit exhaustive case analysis
 - No credit here if the case analysis omits an infinite number of objects. (For example: all odd-length palindromes.)
 - -1 if the case analysis omits an finite number of objects. (For example: the empty string.)
 - -1 for making the reader infer the case conditions. Spell them out!
 - No penalty if cases overlap (forexample: even length at least 2, odd length at least 3, and length at most 5.)
- + 1 for cases that do not invoke the inductive hypothesis ("base cases")
 - No credit here if one or more "base cases" are missing.
- + 2 for correctly applying the *stated* inductive hypothesis
 - No credit here for applying a different inductive hypothesis, even if that different inductive hypothesis would be valid.
- + 2 for other details in cases that invoke the inductive hypothesis ("inductive cases")
 - No credit here if one or more "inductive cases" are missing.