
CS/ECE 374 B Homework 3 (due September 24) Fall 2019

1. Prove whether the following languages are regular or not.

(a) Strings over the alphabet Σ= {0, . . . , 9, #} that contain a substring c#cc, where c ∈ {0, . . . , 9}.
E.g., 382103###38592, 7892##234 and 00 are in the language.

Solution: Σ∗(00+ 1#1+ 2##2+ 3#33+ 4#44+ 5#55+ 6#66+ 7#77+ 8#88+ 9#99)Σ∗

Since we can make a regular expression for this language, the language is regular. �

(b) Strings over the alphabet Σ= {0, . . . , 9,#} of the form 〈n〉#n, where n is a sequence of digits
interpreted as a decimal number. E.g., 0, 3###, 11########### are in the language.

Solution: Let F = {1n | n> 0}.
Let x and y be arbitrary distinct elements of F .
Then x = 1i and y = 1 j for some positive integers i and j, where i 6= j.
Let z = #<x>.
Then xz = 1i#<1i> ∈ L
And yz = 1 j#<1i> /∈ L
Thus, F is a fooling set for L.
Since there are infinitely many elements in F , L cannot be regular.

�

(c) Strings over the alphabet Σ = {a, b, . . . , z} that have the same 3 characters repeated in two
places. E.g., urbanebanana, trampolinejuggling, acclimatization.

Solution:
Σ∗((aaa)Σ∗(aaa) + aabΣ∗(aab) + . . .+ (zzz)Σ∗(zzz))Σ∗

Since we can make a regular expression for the language (albeit a long and unwieldy one), the
language is regular.

Alternately, for any specific three character sequence xyz, the language of strings where
that sequence repeats twice is clearly regular since it has the regex Σ∗xyzΣ∗xyzΣ∗. Our
desired language is the union of all of the 263 such languages. Since 263 is finite, the union is
also regular. �
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2. Let f : Σ1→ Σ∗2 be a function from symbols in one alphabet to strings in another. We can extend f
to apply to strings in Σ∗1 by the following recursive definition:

f (ε) = ε
f (ax) = f (a) · f (x) for a ∈ Σ1, x ∈ Σ∗1

Likewise, we can apply f to languages by defining f (L) = { f (w)|w ∈ L}.
f is known as a language homomorphism. For example, we can define f to map 0 to batman
and 1 to robin, then f (110) = robinrobinbatman. As another example, we can define fASCII
that maps each character to its 8-bit ASCII binary representation, in which case fASCII(374) =
001100110011011100110100.

Given a DFA M that accepts L, show how to construct an NFA N that accepts f (L). Formally prove
the correctness of your construction.

Note that we are looking for an explicit construction of an NFA here, rather than simply a proof that
f (L) is regular, which implies the existence of such an NFA N .

Solution: We are given f : Σ1→ Σ∗2 and a DFA M = (Σ1,Q1, s1, A1,δ1). We will construct an NFA
N = (Σ2,Q2, s2, A2,δ2)

If we want N to accept the language f (L), we want to convert every transition δ(q, a) = p in M
into a series of transitions and new states so that p ∈ δ∗(q, f (a)) in N. In order to achieve the goal,
we first define the set of states as:

Q2 =Q1 ∪Q1 ×Σ1 × {1,2, ..., n},
n=max

a∈Σ1

| f (a)|

Intuitively, the states q for q ∈Q1 correspond to being in the same state in the original DFA. The
state (q, c, i) corresponds to having seen i characters of f (c) after arriving from state q.

Then, we define the transition function δ2 for N as following

δ2(q,ε) = {(q, a, 0)|a ∈ Σ1}, for q ∈Q1

δ2((q, a, i), f (a)[i + 1]) = {(q, a, i + 1)}, for q ∈Q1, a ∈ Σ1, 0≤ i ≤ | f (a)| − 1

δ2((q, a, |( f (a)|),ε) = {δ1(q, a)}, for q ∈Q1, a ∈ Σ1

Note that f (a)[i] denotes the the i th character in string f (a) and | f (a)| denotes the length of
f (a). The idea here is that we build a simple NFA Na that matches f (a) using | f (a)|+ 1 states and
add a copy of it for every DFA state q, using states (q, a, 0), . . . , (q, a, | f (a|). In each state q we guess
which DFA character would be used next by making an ε-transition to (q, a, 0), and once all of f (a)
is matched, we take another epsilon transition from (q, a, | f (a)|) to δ1(q, a)

The new starting state will still be s1 and the new accepting states will be also remain unchanged:

s2 = s1

A2 = A1

An example for such construction is provided in the following figure.
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Below we provide a formal proof of correctness. Note that this proof is long and tedious; it’s
shown here to give you some perspective on the things you have to think about when writing proofs.
Some of the lemmas could probably be stated directly in Before proving the correctness of the
construction, we first prove a couple of lemmas about NFAs that will be useful.

Lemma 1. For any state q ∈Q, ε−reach(ε−reach(q)) = ε−reach(q)

(As in the notes, when S ⊂ Q we use ε−reach(S) to mean
⋃

q∈S ε−reach(q). Likewise, δ(S, x) =
⋃

q∈S δ(q, x) and δ∗(S, x) =
⋃

q∈S δ
∗(q, x).)

Proof: For any r ∈ ε−reach(q), we have r ∈ ε−reach(r). Therefore:

ε−reach(q) =
⋃

r∈ε−reach(q)
r ⊂
⋃

r∈ε−reach(q)
ε−reach(r) = ε−reach(ε−reach(q))
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We also have that ε−reach(r) ⊂ ε−reach(q), so:

ε−reach(ε−reach(r)) =
⋃

r∈ε−reach(q)
ε−reach(r) ⊂

⋃

r∈ε−reach(q)
ε−reach(q) = ε−reach(q)

�

Lemma 2. For any w, y ∈ Σ∗, q ∈Q:

δ∗(q, wy) = δ∗(δ∗(q, w), y)

Proof: Let w and y be arbitrary strings from Σ∗. Assume δ∗(q, x y) = δ∗(δ∗(q, x), y) for every
possible x that is shorter than w, i.e., |x |< |w|.

• Suppose |w|= 0, w= ε. Either y = ε, in which case:

δ∗(δ∗(q, w), y) = δ∗(δ∗(q,ε),ε)
= δ∗(ε−reach(q),ε) by definition of δ∗

=
⋃

r∈ε−reach(q)
ε−reach(r) by definition of δ∗

= ε−reach(q) by Lemma 1
= δ∗(q,ε) = δ∗(q, wy) by definition of δ∗

Otherwise, y = az for a ∈ Σ, z ∈ Σ∗

δ∗(q, wy) = δ∗(q,εy) = δ∗(q, az) w= ε, y = az

= δ∗(δ(ε−reach(q), a), z) by definition of δ∗

= δ∗(δ(ε−reach(ε−reach(q)), a), z) by Lemma 1
= δ∗(δ(ε−reach(δ∗(q,ε)), a), z) by definition of δ∗

= δ∗(δ∗(q,ε), az) by definition of δ∗

= δ∗(δ∗(q, w), y) w= ε, y = az

• Suppose w= ax , for some a ∈ Σ and x ∈ Σ∗. Then |x |< |w|

δ∗(q, wy) = δ∗(q, ax y) w= ax

= δ∗(δ(ε−reach(q), a), x y) by definition of δ∗

= δ∗(δ∗(δ(ε−reach(q), a), x), y) by inductive hypothesis
= δ∗(δ∗(q, ax), y) by definition of δ∗

= δ∗(δ∗(q, w), y) w= ax

Therefore, we conclude that δ∗(q, wy) = δ∗(δ∗(q, w), y) is true for any possible wy ∈ Σ∗ and q ∈Q.

�

Next we will prove a key property of the constructed NFA. Let substring(x , i, k) be the substring
of x of length k starting at position i.

Lemma 3. For any q ∈ Q1, a ∈ Σ1 and x ∈ Σ∗2, i a non-negative integer with |x |+ i ≤ | f (a)|, we
have:

δ∗2((q, a, i), x) = ε−reach((q, a, i + |x |)) if x = substring( f (a), i, |x |)
δ∗2((q, a, i), x) = ; otherwise
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This result is a straightforward consequence of the way the NFA is constructed, which we can prove
by induction on |x |

Proof: Suppose the lemma holds true for all y ∈ Σ∗2 with |y|< |x |.
First consider |x |= 0. Then x = ε and x equal to substring( f (a), i, 0)). By definition of δ∗2,

δ∗2((q, a, i), x) = δ∗2((q, a, i),ε) = ε−reach((q, a, i)) = ε−reach((q, a, |x |))

Suppose now that |x | > 0. Then x = yc for y ∈ Σ∗2, c ∈ Σ2. If x = substring( f (a), i, |x |) then
y = substring( f (a), i, |x | − 1) and c = f (a)[|x |+ i]. Therefore:

δ∗2((q, a, i), y) = ε−reach((q, a, i + |x | − 1)) by the inductive hypothesis
= {(q, a, i + |x | − 1)} since (q, a, i + |x | − 1) has no ε-transitions for i + |x | − 1< | f (a)|

(1)

Then:

δ∗2((q, a, i), x) = δ∗2((q, a, i), yc)
= δ∗2(δ

∗
2((q, a, i), y), c) by Lemma 2

= δ∗2((q, a, i + |x | − 1), c) per (1)
= δ∗2(δ2((q, a, i + |x | − 1, f (a)[i + |x |]),ε) by definition of δ∗2
= δ∗2((q, a, |x |+ i),ε) by definition of δ2

= ε−reach((q, a, |x |+ i) by definition of δ∗2

If x 6= substring( f (a), i, |x |) but y = substring( f (a), i, |x | − 1), we must have c 6= f (a)[|x |+ i]. In
this case:

δ∗2((q, a, i), x) = δ∗2((q, a, i + |x | − 1), c) as above
= δ∗2(δ2((q, a, i + |x | − 1, c),ε) by definition of δ∗2
= δ∗2(;,ε) by definition of δ2, since c 6= f (a)[|x |+ i]
= ;

On the other hand, if y 6= substring( f (a), i, |x | − 1) then:

δ∗2((q, a, i), x) = δ∗2((q, a, i), yc)
= δ∗2(δ

∗
2((q, a, i), y), c) by Lemma 2

= δ∗2(;, c) by the inductive hypothesis
= ;

This completes the case analysis and proves the lemma. �

Our next lemma ties δ∗1 and δ∗2.

Lemma 4. For x ∈ Σ∗1, q ∈Q1, we have that:

δ∗1(q, x) ∈ δ∗2(q, f (x))

Proof: Again, we can prove this by induction on |x |. Suppose that the lemma holds for all y with
|y|< |x |. If |x |= 0 then

δ∗1(q, x) = δ∗1(q,ε) = q

δ∗2(q, f (x)) = δ∗2(q, f (ε)) = δ∗2(q,ε) = ε−reach(q)
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Since q ∈ ε−reach(q) the result holds. If |x | > 0 then x = c y for some y ∈ Σ∗1, c ∈ Σ1. First we
have:

δ∗1(q, x) = δ∗1(q, c y) = δ∗1(δ1(q, c), y)

Next, since (q, c, 0) ∈ ε−reach(q), δ∗2((q, c, 0), f (x)) ⊂ δ∗2(q, f (x)). We now have:

δ∗2((q, c, 0), f (x)) = δ∗2(q, f (c y))
= δ∗2((q, c, 0), f (c) f (y)) by homomorphism of f

= δ∗2(δ
∗
2((q, c, 0), f (c)), f (y)) by Lemma 2

= δ∗2(ε−reach((q, c, | f (c)|)), f (y)) by Lemma 3
⊃ δ∗2(δ1(q, c), f (y)) since δ2((q, c, | f (c)|),ε) = {δ1(q, c)}

By the inductive hypothesis, δ∗1(δ1(q, c), y) ∈ δ∗2(δ1(q, c), f (y)). Since δ∗2(δ1(q, c), f (y)) ⊂
δ∗2((q, c, 0), f (x)) ⊂ δ∗2(q, f (x)) we have δ∗1(q, x) = δ∗1(δ1(q, c), y) ∈ δ∗2(q, f (x)), proving the
lemma. �

Given y ∈ f (L), there must exist x ∈ L such that f (x) = y. Since x ∈ L, δ∗1(s, x) ∈ A. By the
above lemma, δ∗1(s, x) ∈ δ∗2(s, f (x)) = δ∗2(s, y). Therefore δ∗2(s, y)∩ A 6= ; and therefore y ∈ L(N).

To conclude the proof, we need to show that if y ∈ L(N), then there must be some x ∈ L with
f (x) = y . First we need to deal with the fact that f (c) could be ε for some c ∈ Σ1.

Lemma 5. For q, p ∈Q1, if q ∈ ε−reach(p) then ∃x ∈ Σ∗1 such that q = δ∗1(p, x) and f (x) = ε.

Proof: If q ∈ ε−reach(p) then there must exist a sequence of states r1, r2, . . . , rn with r1 = p, rn = q
and ri+1 ∈ δ2(ri ,ε). We will prove the result by induction of the length of this sequence. Note first
that our NFA has two types of ε-transitions: from a state q ∈ Q1 to (q, c, 0) for some c ∈ Σ1 and
from (q, c, | f (c)|) to δ1(q, c). It is therefore easy to see that in the sequence r1, r2, . . . , rn, n must be
odd; every odd ri is in Q1 and every even ri is of the form (ri−1, c, 0) for some c ∈ Σ1.

Suppose that the lemma is true for every sequence t1, . . . , tm for m < n. If n = 1, then q = p,
and setting x = ε gets us the desired result that f (x) = ε and δ∗1(p, x) = δ∗1(p,ε) = p = q.

Now suppose that n > 1. Then rn−1 = (ri−2, c, 0) for some c ∈ Σ1. The existence of an
ε-transition from rn−1 to rn ∈Q1 implies that | f (c)|= 0 (so f (c) = ε)) and δ1(ri−2, c) = rn. By the
inductive hypothesis, there exists y ∈ Σ∗1 such that δ∗1(p, y) = rn−2 and f (y) = ε. Then δ∗1(p, yc) =
δ1(δ∗1(p, y), c) = δ1(rn−2, c) = rn = q and f (yc) = f (y) f (c) = ε, proving the lemma. �

We’re finally ready for the lemma that will imply the main result.

Lemma 6. If p, q ∈Q1 and x ∈ Σ∗2 with q ∈ δ∗2(p, x), then there exists y ∈ Σ∗1 with f (y) = x and
δ∗1(p, x) = q

Proof: We prove this by induction on |x |. If |x | = 0 then δ∗2(p, x) = δ∗2(p,ε) = ε−reach(p). By
Lemma 5, q ∈ ε−reach(p) implies that there is a y ∈ Σ∗1 with f (y) = ε= x and δ∗1(p, y) = q.

Suppose |x |> 0 and assume that the lemma holds for all y ∈ Σ∗2 with |y|< |x |. Let x = aw for
a ∈ Σ2 and w ∈ Σ∗2.

δ∗2(p, x) = δ∗2(p, aw) = δ∗2(δ2(ε−reach(p), a), w)

Since q ∈ δ∗2(p, x), there must be some r ∈ ε−reach(p) with q ∈ δ∗2(δ2(r, a), w). Note that for
r ∈ Q1, δ2(r, a) = ;, so we must have that r = (r ′, c, 0) for some r ′ ∈ Q1, c ∈ Σ1. Since the only
ε-transition to (r ′, c, 0) is from r ′, it must be that r ′ ∈ ε−reach(p) and thus by Lemma 5 there is a
u ∈ Σ1 such that f (z) = ε and δ∗1(p, u) = r ′.
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Since δ2(r, a) 6= ;, by Lemma 3, we must have a = f (c)[1]. Furthermore, for 1≤ i ≤ | f (c)| − 1,
it must be the case that substring(w, 1, i) = substring( f (c), 2, i), since otherwise

δ∗2(δ2(r, a), w) = δ∗2((r
′, c, 1), w) since a = f (c)[1]

= δ∗2(δ
∗
2((r

′, c, 1), substring(w, 1, i)), substring(w, 1+ i, |w| − i)) by Lemma 2
= δ∗2(;, substring(w, 1+ i, |w| − i) by Lemma 3
= ;

Let z = substring(w, 1+ | f (c)| − 1, |w| − | f (c)|+ 1). Then

x = aw= a · substring(w, 1, | f (c)| − 1) · substring(w, 1+ | f (c)| − 1, |w| − | f (c)|+ 1)
= f (c) · z

Since q ∈ δ∗2(δ2(r, a), w) we must have:

q ∈ δ∗2(δ2(ε−reach(r), a), w) = δ∗2(r, aw)
= δ∗2(r, f (c) · z)
= δ∗2(δ

∗
2(r, f (c)), z) by Lemma 2

= δ∗2(ε−reach((r
′, c, | f (c)|)), z) by Lemma 3

= δ∗2(ε−reach(δ1(r
′, c)), z) since δ2((r

′, c, | f (c)|),ε) = {δ1(r
′, c)}

= δ∗2(δ1(r
′, c), z)

Since |z|< |x | by the inductive hypothesis there exists z′ ∈ Σ∗1 with f (z′) = z and δ∗1(δ1(r ′, c), z′) = q.
Putting everything together, we have:

f (u · c · z′) = ε · f (c) · z = x

δ∗1(p, u · c · z′) = δ∗1(δ1(p, u), c · z′)
= δ∗1(r

′, c · z′)
= δ∗1(δ1(r

′, c), z′) = q

�

Therefore, if x ∈ L(N) then for some q ∈ A, q ∈ δ∗2(s, x). By the above Lemma, there exists
y ∈ Σ∗1 with f (y) = x and δ∗1(s, y) = q. Since q ∈ A, y ∈ L, and therefore x ∈ f (L)
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3. Give a context-free grammar for the following languages. You must specify what language is
generated by each non-terminal and briefly explain why.

(a) Binary strings that have remainder of 2 when divided by 5 (e.g., 111, 10, 10001).

Solution:

S→ 0S | 1U

U → 0 | 0D | 1T

D→ 0C | 1S

T → 0U | 1 | 1D

C → 0T | 1C

This language is in fact regular; the DFA from which the production rules above are derived is
here shown.

Every transition from a state a on symbol x to state b (where states a and b each represent
different remainders when the string read so far is divided by 5) is paralleled by expanding
a non-terminal A into the symbol x followed by a non-terminal B. Therefore each of S (the
starting non-terminal), U (’uno’), D (’dos’), T (’tres’), and C (’cuatro’) generates some arbitrary
binary string, this string being suffixed to an already generated binary prefix whose value has
a remainder of 0, 1, 2, 3, or 4 respectively when divided by 5. The expansion of U to 0 or 0D,
and that of T to 1 or 1D, represents the option of terminating the resulting ’acceptable’ string,
since its value will have remainder 2 when divided by 5, or the option of continuing to expand
the string beyond the current ’acceptable’ result. �

(b) Strings over the alphabet {0,1} that have two blocks of 0’s of equal length. E.g., 001100010001110
or 10110011100010 but not 0 or 0100.

Solution:

S→ CV D

C → F1 | ε
D→ 1F | ε
V → 0W0

W → 0W0 | 1 | 1F1
F → 0F | 1F | ε
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• F generates any arbitrary string of 0s and 1s, as these are what the portions of the string
not corresponding to the two equal-length blocks of 0s consist of.

• W generates blocks of zeros of length ≥ 0 which are separated by either a single 1 or an
arbitrary string beginning and ending with 1 (so that neither block of 0s runs together
with the substring separating the blocks).

• V generates a language similar to that generated by W , except that the blocks of 0s are of
length ≥ 1 (since blocks of length 0 amount to blocks that do not exist).

• C generates an arbitrary string which ends with a 1 (to prevent the arbitrary string and
the first block of 0s from possibly running together), or alternatively the empty string (to
allow the first block of 0s to start the string).

• D generates an arbitrary string which starts with a 1 (to prevent the second block of 0s
and the arbitrary string from possibly running together), or alternatively the empty string
(to allow the second block of 0s to end the string).

• S, as the starting non-terminal, generates two separated blocks of 0s optionally padded
with arbitrary strings on either side (the one on the left ending with 1 and the one on the
right beginning with 1, as applicable), and thus generates the language described in the
subproblem.

�

(c) Arithmetic expressions over decimal numbers using addition (+), multiplication (*), and
exponentiation (ˆ) with minimal parentheses. Here are the rules:

• The usual precedence rules apply, so 1+2*3ˆ4 is equivalent to 1+(2*(3ˆ4))
• Any parentheses that could be removed without changing the meaning of the expression are

not allowed. E.g., 1+(2*(3ˆ4)) is an invalid expression, as are (2*3)+5, 3+(4+8),
(4+6), 3ˆ((4+5)). 2*(3+5), however, is valid.

• Since exponentiation is not associative, any double (or more) exponentiation must be
parenthesized to remove ambiguity. I.e., 2ˆ3ˆ4 is invalid, instead you have to write
(2ˆ3)ˆ4 or 2ˆ(3ˆ4). Likewise (1+2)ˆ(3*4)ˆ5 is invalid.

Solution:

S→ A | M | E | D
A→ B+B

B→ A | M | E | D
M → N*N

N → (A) | M | E | D
E→ FˆF

F → (A) | (M) | (E) | D
D→ 0|1G|2G|3G|4G|5G|6G|7G|8G|9G

G→ 0G|1G|2G|3G|4G|5G|6G|7G|8G|9G|ε

• G generates arbitrary decimal numbers of length ≥ 0, as these are what the operations in
the arithmetic expression fundamentally deal with.

• D generates any arbitrary decimal number of length ≥ 1 (the omission of ε and the
substitution of 0 for 0G, when comparing this production rule to that for G, is to prevent
including the empty string or decimal numbers beginning with 0–other than 0 itself–as
arithmetic expressions).

• A generates arithmetic expressions in which two operands are added. M does similarly
for when two operands are multiplied and E does similarly for when an operand is raised
to the power of another.

9
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• B generates arithmetic expressions denoting an operand in an addition expression. N
does similarly for a multiplication expression and F does similarly for an exponentiation
expression. While all may be expanded to decimal numbers D without the need for
parentheses in any case, there are some differences in parenthesis inclusion when handling
subexpressions:
– Because addition occurs last in the order of precedence, no parentheses are necessary
when B expands to M or E. Because addition is associative, expansion from B to A
does not require parentheses either.

– Because multiplication occurs before addition and after exponentiation in the order of
precedence, parentheses are needed when N expands to A but not when N expands
to E. Because multiplication is associative, no parentheses are necessary when N
expands to M .

– Because exponentiation occurs first in the order of precedence, parentheses are
necessary when F expands to A or M . Because exponentiation is not associative,
expansion from F to E requires parentheses as well.

• S, as the starting non-terminal, generates a top-level expression (be it a decimal number or
a subexpression involving addition, multiplication, or exponentiation), and thus generates
the language described in the subproblem.

�

10



CS/ECE 374 B Homework 3 (due September 24) Fall 2019

Solved problem

4. Let L be the set of all strings over {0,1}∗ with exactly twice as many 0s as 1s.

(a) Describe a CFG for the language L.
[Hint: For any string u define ∆(u) = #(0, u)− 2#(1, u). Introduce intermediate variables
that derive strings with ∆(u) = 1 and ∆(u) = −1 and use them to define a non-terminal that
generates L.]

Solution: S→ ε | SS | 00S1 | 0S1S0 | 1S00 �

(b) Prove that your grammar G is correct. As usual, you need to prove both L ⊆ L(G) and L(G) ⊆ L.
[Hint: Let u≤i denote the prefix of u of length i. If ∆(u) = 1, what can you say about the
smallest i for which ∆(u≤i) = 1? How does u split up at that position? If ∆(u) = −1, what
can you say about the smallest i such that ∆(u≤i) = −1?]

Solution: We separately prove L ⊆ L(G) and L(G) ⊆ L as follows:

Claim 1. L(G) ⊆ L, that is, every string in L(G) has exactly twice as many 0s as 1s.

Proof: As suggested by the hint, for any string u, let ∆(u) = #(0, u)− 2#(1, u). We need to
prove that ∆(w) = 0 for every string w ∈ L(G).

Let w be an arbitrary string in L(G), and consider an arbitrary derivation of w of length
k. Assume that ∆(x) = 0 for every string x ∈ L(G) that can be derived with fewer than
k productions.1 There are five cases to consider, depending on the first production in the
derivation of w.

• If w= ε, then #(0, w) = #(1, w) = 0 by definition, so ∆(w) = 0.
• Suppose the derivation begins S  SS ∗ w. Then w= x y for some strings x , y ∈ L(G),

each of which can be derived with fewer than k productions. The inductive hypothesis
implies ∆(x) =∆(y) = 0. It immediately follows that ∆(w) = 0.2

• Suppose the derivation begins S  00S1 ∗ w. Then w= 00x1 for some string x ∈ L(G).
The inductive hypothesis implies ∆(x) = 0. It immediately follows that ∆(w) = 0.

• Suppose the derivation begins S  1S00 ∗ w. Then w= 1x00 for some string x ∈ L(G).
The inductive hypothesis implies ∆(x) = 0. It immediately follows that ∆(w) = 0.

• Suppose the derivation begins S   0S1S1  ∗ w. Then w = 0x1y0 for some strings
x , y ∈ L(G). The inductive hypothesis implies ∆(x) =∆(y) = 0. It immediately follows
that ∆(w) = 0.

In all cases, we conclude that ∆(w) = 0, as required. �

Claim 2. L ⊆ L(G); that is, G generates every binary string with exactly twice as many 0s
as 1s.

Proof: As suggested by the hint, for any string u, let∆(u) = #(0, u)−2#(1, u). For any string
u and any integer 0≤ i ≤ |u|, let ui denote the ith symbol in u, and let u≤i denote the prefix
of u of length i.

Let w be an arbitrary binary string with twice as many 0s as 1s. Assume that G generates
every binary string x that is shorter than w and has twice as many 0s as 1s. There are two
cases to consider:

• If w= ε, then ε ∈ L(G) because of the production S→ ε.

1Alternatively: Consider the shortest derivation of w, and assume ∆(x) = 0 for every string x ∈ L(G) such that |x |< |w|.
2Alternatively: Suppose the shortest derivation of w begins S  SS ∗ w. Then w= x y for some strings x , y ∈ L(G). Neither x

or y can be empty, because otherwise we could shorten the derivation of w. Thus, x and y are both shorter than w, so the induction
hypothesis implies. . . . We need some way to deal with the decompositions w= ε • w and w= w • ε, which are both consistent with
the production S→ SS, without falling into an infinite loop.
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• Suppose w is non-empty. To simplify notation, let ∆i = ∆(w≤i) for every index i, and
observe that ∆0 =∆|w| = 0. There are several subcases to consider:
– Suppose ∆i = 0 for some index 0< i < |w|. Then we can write w= x y , where x and

y are non-empty strings with ∆(x) = ∆(y) = 0. The induction hypothesis implies
that x , y ∈ L(G), and thus the production rule S→ SS implies that w ∈ L(G).

– Suppose ∆i > 0 for all 0 < i < |w|. Then w must begin with 00, since otherwise
∆1 = −2 or∆2 = −1, and the last symbol in w must be 1, since otherwise∆|w|−1 = −1.
Thus, we can write w = 00x1 for some binary string x . We easily observe that
∆(x) = 0, so the induction hypothesis implies x ∈ L(G), and thus the production rule
S→ 00S1 implies w ∈ L(G).

– Suppose∆i < 0 for all 0< i < |w|. A symmetric argument to the previous case implies
w= 1x00 for some binary string x with ∆(x) = 0. The induction hypothesis implies
x ∈ L(G), and thus the production rule S→ 1S00 implies w ∈ L(G).

– Finally, suppose none of the previous cases applies: ∆i < 0 and ∆ j > 0 for some
indices i and j, but ∆i 6= 0 for all 0< i < |w|.

Let i be the smallest index such that ∆i < 0. Because ∆ j either increases by 1 or
decreases by 2 when we increment j, for all indices 0< j < |w|, we must have ∆ j > 0
if j < i and ∆ j < 0 if j ≥ i.

In other words, there is a unique index i such that ∆i−1 > 0 and ∆i < 0. In
particular, we have ∆1 > 0 and ∆|w|−1 < 0. Thus, we can write w= 0x1y0 for some
binary strings x and y , where |0x1|= i.

We easily observe that ∆(x) = ∆(y) = 0, so the inductive hypothesis implies
x , y ∈ L(G), and thus the production rule S→ 0S1S0 implies w ∈ L(G).

In all cases, we conclude that G generates w. �

Together, Claim 1 and Claim 2 imply L = L(G). �

Rubric: 10 points:
• part (a) = 4 points. As usual, this is not the only correct grammar.
• part (b) = 6 points = 3 points for ⊆ + 3 points for ⊇, each using the standard induction

template (scaled).
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