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Homework 4

CS/ECE 374B

Due 8 p.m. on Tuesday, October 6

All of this has happened before and all this will happen again.

1. Solve the following recurrences. For parts (a) and (b), give an exact solution. For parts (c) and (d), give an
asymptotic one. In both cases, justify your solution.

(@

(b)

@]

A(n)=A(n—1)+2n—1;A(0)=0

Solution:

We will do this problem by unrolling:
A(n)=A(n—1)+2n—1
An)=An—-2)+2(n—1)—1)+2n—1
An)=((An—3)+2(n—2)—1)+2(n—1)—1)+2n—1
A(n)=A(n—3)+6n—9

A(n) =A(n—k) + 2nk — k2
A(n)=An—k)+k(2n—k)

The base case is A(0) =0, so n —k =0, and k = n at base case. Plugging in...

A(n) =A(0)+n(2n—n)
A(n)=0+2n2—n?

A(n) =n?
B(n)=B(n—1)+(});B(0)=0
Solution:

We will do this problem by unrolling:
B(n)=B(n—1)+(})
B(n)=B(n—2)+(",")+(})

B(n) =B(n—3)+("3%) + ("3 +(5)

: o
B(n)=B(n—k)+ >, ("7")
The base case is B(0) =0, so n—k = 0, and k = n at base case. Plugging in...

B(n) = B(0) + gn(n*—1)
B(n)=0+ %(n3 —n)

B(n) = n3gn
C(n)=C(n/2)+C(n/3)+C(n/6)+n
Solution:

We will do this problem by recursion trees:

We model this recurrence as a recursion tree. the root node represents the base case, with a value of n.

It has 3 nodes, with values 3, 5, z. The next level has 9 nodes, with values %, z, 5, . 5> 15> 13> 1t



€))

@

3¢- We can see that the nodes at each level sum to n. Using the base case C(3;) = 1, we see that the
maximum depth of the tree is k = logn. Therefore, we have logn levels with n work per level, so the
recurrence is ©(nlogn).

D(n) = D(n/2)+ D(n/3) + D(n/6) + n?

Solution:
We will do this problem by recursion trees:

We model this recurrence as a recursion tree. the root node represents the base case, with a value of
2 i 2 n? on? i 2 on? nt on?op?
nz. It ?as % nodzes, with values -, %, 5z. The next level has 9 nodes, with values ¢, 3¢, 12> 35> 51

noon o 2(7nyi gj i
334> 1447 3247 1296" We cap see that the nodes at eac.h level. sum to n“({g)'. Since the sgm per level is a
decreasing geometric series, the overall recurrence is dominated by the root node of n*. Therefore the

recurrence is ©(n?).

Page 2



2. In class, we discussed the recursive algorithm for the Towers of Hanoi problem.

def hanoi(ndisks, source, dest, tmp):

""" Move ‘ndisks’ from the ‘source’ tower to the ‘dest’ tower,

using the ‘tmp’ tower as temporary space """

if ndisks > 0:
# recursively move stack of ndisks—1 disks to tmp tower
hanoi(ndisks—1, source, tmp, dest)
# move one disk from source to destination
moveone(source, dest)
# recursively move stack of ndisks—1 disks to dest tower
hanoi(ndisks—1, tmp, dest, source)

else:
pass # do nothing

In the following, assume that the towers are numbered 0, 1, 2 and the standard task is to move n disks from
tower O to tower 1 (i.e., hanoi(n,0,1,2))

5) (a) Suppose that moveone had a restriction that either the source or the destination must be tower 0. Modify
the recursive algorithm to abide by this restriction. Analyze exactly how many calls to moveone are
needed to move n disks in your solution.

Solution: As before, our solution recursively moves n — 1 disks to the temporary tower, then moves
the remaining disk to the destination, and moves the n — 1 disks to the destination. However, to avoid
making an illegal calls, when it needs to make a recursive move between towers 1 and 2, it instead uses
two moves, using tower O as an intermediate. As a result, every call to moveone is made with either
source or destination being tower 0.

def hanoi(n, s, d, t):
if n==
return
if 0in (s,t):
# can move disks directly
hanoi(n—1, s, t, d)
else:
# need indirect moves
hanoi(n—1, s, d, t)
hanoi(n—1, d, t, s)
moveone(s, d)
if 0in (t,d):
hanoi(n—1, t, d, s)
else:
hanoi(n—1, t, s, d)
hanoi(n—1, s, d, t)

To analyze this, note that for all possible combination of (s, d, t) parameters—(0,1,2), (0,2,1), (1,0,2),
and (2,0,1)—there are exactly 3 recursive calls made (except for the base case). This leaves us with the
recurrence:

T(0)=0
T(n)=3T(n—1)+1

The solution to the recurrence can be seen to be:

3n—1
2

T(n)=
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Indeed, assuming that T(n—1) = =5—, we have:
3nl-1 3"-3 2 3"—1
T(n)=3T(n—1)+1=3——+1= +—-=
2 2 2 2
]
(5) (b) Suppose instead that you are give another call, moveall that can move an entire stack of disks from

one tower to another, but moveall can only be called to move disks from tower 2. lLe., you may call
moveall(2,0) or moveall(2,1), using it with any other arguments will cause an error.

Modify the algorithm to take advantage of moveall. Calculate the exact number of calls to moveone and
moveall your algorithm makes for n disks.

Solution: We can modify the standard Hanoi solution to make use of the moveall call whenever the
source tower is tower 2. However, we have to be careful, since when we are in a recursive call, there
could be other disks on tower 2 that we are not (yet) supposed to move. To account for this, we add an
extra flag when we move a disk to tower 2 and then make a recursive call, to make sure we don’t use
moveall in that scenario.

def hanoi(ndisks, src, dst, tmp, twobusy=False):
""" Move ‘ndisks‘ from the ‘src’ tower to the ‘dst’ tower,
using the ‘tmp‘ tower as temporary space. ‘twobusy’
indicates whether tower 2 has other disks on it that
we are not supposed to move. """
if n==
return
if s == 2 and not twobusy:
# can move disks directly
moveall(source, dest)
else:
hanoi(ndisks—1, src, tmp, dst, twobusy)
moveone(src, dst)
hanoi(ndisks—1, tmp, dst, src, twobusy or dst == 2)

To analyze the number of calls, we unroll the recursion a few steps. When we call hanoi(n,0,1,2,False),
it will make the following calls:
* hanoi(n—1,0,2,1,False)
* moveone(0,1)
* hanoi(n—1,2,1,0,False)
Expanding the next two recursive calls, we are left with:

* Expansion of hanoi(n—1,0,2,1,False)
- hanoi(n—2,0,1,2,False)
— moveone(0,2)
— hanoi(n—2,1,2,0,True)
* moveone(0,1)
* Expansion of hanoi(n—1,2,1,0,False)
- moveall(2,1)
Observe that if twobusy is True, our modified Hanoi function behaves exactly as the original one.
Therefore, hanoi(n—2,1,2,0,True) will make exactly 22 — 1 calls to moveone and 0 calls to moveall.

Therefore, if we let T(n) be the number of calls to moveone that hanoi(n,0,1,2,False) makes, we
have the following recurrence:
T(M)=TM—2)+2"2—-1+2
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For easier analysis, we can rewrite this as two recurrences:
Teven(n) =T(2n)

Toaa(n)=T(2n+1)

Then:
Teven(n) = Teven(n - 1) +272 41

Toaa(n) = Toaa(n—1)+ 22" +1

Noting that T,.,(0) =0 and T,44(0) = 1, we can solve these to obtain:

22n _q

Teven(n) =n+

22n+1 +1

T qq(n)=n+
odd() 3

We can combine these to obtain:

on 4 (_1)n+1

T(n)=[n/2]+ 3

Similarly, if we let T’(n) be the number of calls to moveall, we can see that
T'(n)=T'(n—2)+1
With T/(0) = T’(1) = 0, we can solve this to obtain

T'(n) =|n/2]
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Suppose you have a string of n Christmas lights, numbered 1,...,n that are wired in series. One of
the lights is broken and you want to find out which. You have a multimeter that you can use to test
whether any section of the string works. Le., test(i, j) returns True if lights i through j (inclusive) are all
working, and False if one of them is broken. Design a recursive algorithm to identify the broken light
(you should assume there is exactly one) and analyze its runtime. For full credit your algorithm should
make a sublinear number of calls to test (i.e., o(n)).

Solution:

def identifyBrokenLight(a,b):
""" The top—level invocation is identifyBrokenLight(1,n). """
if(a == b and test(a,a) == False): # identified broken light
return a
elif(a == b and test(a,b) == True): # no broken lights
return —1
elif(test(a,(a+b)/2) == False): # left half
return identifyBrokenLight(a,(a+b)/2)
elif(test((a+b)/2+1,b) == False): # right half
return identifyBrokenLight((a+b)/2+1,b)

Every call to identifyBrokenLight halves the length of the string being examined, in a manner quite similar
to binary search, so that finding the broken light takes ©(logn) time. |

Suppose now that up to k lights may be broken. Modify your algorithm to find all the broken lights. How
big can k be before your algorithm is no longer faster than testing each light?
Solution:

def identifyBrokenLights(a,b):
""" The top—level invocation is identifyBrokenLights(1,n).
found_lights =[]
if(a==Db and test(a,a) == False): # found a broken light
found_lights +=a
elif(test(a,b) == True): # no broken lights
return found_lights
if(test(a,(a+b)/2) == False): # left half
found_lights += identifyBrokenLights(a,(a+b)/2)
if(test((a+b)/2+1,b) == False): # right half
found_lights += identifyBrokenLights((a+b)/2+1,b)
return found_lights

This algorithm requires at most ©(logn) for each light, resulting in a total ©(k logn) runtime, making it
no faster than brute force if k = @. ]
In cryptography, an RSA key is the product of two large primes, n = pq. Each key n; should use its own,
randomly generated primes p; and g;; however, due to flaws in random number generators occasionally
two keys will share one or both factors.! For any two correctly generated keys, gcd(n;, n ;) =1, but if
keys share a factor then gcd(n;, n;) # 1.

You are given a large collection of t keys, n,,...,n, and want to find out whether any of them share a
factor. Since GCD takes time to compute, you can use a batch approach to speed up your computation.
batchgcd(i, j, k,1) computes the GCD of two batches of keys:

j l
batchgcd(i, j, k,1) = gcd (l_[ Tm, l_[ “m)

m=i m=k
If batchgcd(i, j, k, 1) # 1 then one of keys n;, ..., n; shares a factor with one of the keys ny,...,n;. (Note

that you will want your two batches to be non-overlapping, since a key n; always shares prime factors
with itself. I.e., you should have 1 <i<j<k<I<t.)

1See N. Heninger, Z. Durumeric, E. Wustrow, and J.A. Halderman, “Mining Your Ps and Qs: Detection of Widespread Weak Keys in Network

Devices,” in Proceedings of 21st USENIX Security Symposium, 2012. https://factorable.net
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Design a recursive algorithm that finds a pair of keys with a shared factor in your collection of t keys
and analyze its runtime. Your algorithm may assume there is exactly one such pair. For full credit your
algorithm should make o(t?) calls to batchgcd, which you can assume take constant time.

Solution:

def findKeysWithSharedFactor(A[a...b]):
"""The top—level invocation is findKeysWithSharedFactor(A[1...n])."""
i =a;j =(b+a)/2; k=(b+a)/2+1;1=b
if(len(A) == 1): # base case
return []
if(batchgcd(i,j,k,1) == 1):
# The two bad keys are in the same half.
# The recursive call with the largest input such that the two keys
# are in separate halves proceeds to the while loops below;
# all others eventually end up at the base case above.
leftlist = findKeysWithSharedFactor(A[a...(b+a)/2])
rightlist = findKeysWithSharedFactor(A[(b+a)/2+1...b])
return leftlist.extend(rightlist)
# One bad key in the left list and the other is in the right list.
# Let’s find the bad key in the left list.

while(i !=j):
if (batchgcd(i,(i+j)/2,k,1) '= 1): # Check left half of left list
j = (i+j)/2
else: # Check right half of left list
i = (i+j)/2+1

# Now let’s find the bad key in the right list.
leftbadkey = A[i]

while(k I=1):
if(batchgcd(i,j,k,(k+1)/2) '= 1): # Check left half of right list
| = (k+1)/2
else: # Check right half of right list
k = (k+1)/2+1

rightbadkey = A[k]
return [leftbadkey, rightbadkey]

If the bad keys are in one half of the collection when splitting it down the middle, then the portion of the
algorithm which looks for a common sublist obeys the recurrence T(n) = 2T(n/2) + 20(1), which is
order ©(nlogn). Once our bad keys are in separate lists, we can then perform a binary search on each
sublist individually, finding the bad key in the left list (keeping the right list constant) and then (with our
left list reduced to just one bad key) finding the bad key in the right list. These two binary searches each
take ©(logn) time. Hence the total runtime of the algorithm is ©(nlogn) + 20(logn) = ©(nlogn). MW

(Not to submit.) Can you modify the algorithm to find all pairs of keys with a shared factor without the
assumption that there is exactly one?

(Not to submit.) Analyze the runtime of your algorithm if batchgcd takes logarithmic time in the size of
the batches, i.e., ©(log(j —i) + log(l — k))?
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Solved Problem

4. Suppose we are given two sets of n points, one set {py,ps,-..,P,} on the line y = 0 and the other
set {q1,95,-.-,q,} on the line y = 1. Consider the n line segments connecting each point p; to the
corresponding point q;. Describe and analyze a divide-and-conquer algorithm to determine how many
pairs of these line segments intersect, in O(nlogn) time. See the example below.

qq 9,49, 9, 4 4, qq

p, P, P, P, PP, Py

Seven segments with endpoints on parallel lines, with 11 intersecting pairs.

Your input consists of two arrays P[1..n] and Q[1..n] of x-coordinates; you may assume that all 2n
of these numbers are distinct. No proof of correctness is necessary, but you should justify the running
time.

Solution: We begin by sorting the array P[1..n] and permuting the array Q[1..n] to maintain corre-
spondence between endpoints, in O(nlogn) time. Then for any indices i < j, segments i and j intersect
if and only if Q[i] > Q[j]. Thus, our goal is to compute the number of pairs of indices i < j such that
Q[i]> Q[j]. Such a pair is called an inversion.

We count the number of inversions in Q using the following extension of mergesort; as a side effect,
this algorithm also sorts Q. If n < 100, we use brute force in O(1) time. Otherwise:

* Recursively count inversions in (and sort) Q[1..|n/2]].
* Recursively count inversions in (and sort) Q[|n/2]+1..n].
* Count inversions Q[i] > Q[j] where i <|n/2]| and j > |n/2] as follows:
— Color the elements in the Left half Q[1..n/2] bLue.
— Color the elements in the Right half Q[n/2 + 1..n] Red.
— Merge Q[1..n/2] and Q[n/2 + 1..n], maintaining their colors.
— For each blue element Q[i], count the number of smaller red elements Q[j].

The last substep can be performed in O(n) time using a simple for-loop:

COUNTREDBLUE(A[1..n]):
count < 0
total < 0

fori—1ton
if A[i] is red
count « count+1
else
total « total + count

return total

In fact, we can execute the third merge-and-count step directly by modifying the MERGE algorithm,
without any need for “colors”. Here changes to the standard MERGE algorithm are indicated in red.
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MERGEANDCOUNT(A[1..n],m):
ie—1; jem+1; count < 0; total — 0

fork<—1lton
ifj>n
B[k] < A[i]; i « i+ 1; total « total + count
elseifi >m
B[k] —A[j]; j« j+1; count « count+1
else if A[i] < A[j]
B[k] < A[i]; i «i+1; total < total + count
else
B[k] < A[j]; j« j+1; count « count+1
forke—1ton
A[k] « B[k]
return total

We can further optimize this algorithm by observing that count is always equal to j —m — 1. (Proof:
Initially, j = m + 1 and count = 0, and we always increment j and count together.)

MERGEANDCOUNT2(A[1..n],m):
i—1; jem+1; total —0

fork—1ton
ifj>n
B[k] «—A[i]; i < i+1; total < total +j—m—1
elseifi>m
Blk] < A[j]; j<j+1
else if A[i] < A[j]
Blk] < Ali]; i < i+1; total « total +j—m—1
else
Blk] < A[j]; j«<j+1
fork—1ton
Alk] « B[k]
return total

The modified MERGE algorithm still runs in O(n) time, so the running time of the resulting modified
mergesort still obeys the recurrence T(n) = 2T(n/2) + O(n). We conclude that the overall running time
is O(nlogn), as required. [ ]

Rubric: 10 points = 2 for base case + 3 for divide (split and recurse) + 3 for conquer (merge
and count) + 2 for time analysis. Max 3 points for a correct O(n?)-time algorithm. This is neither
the only way to correctly describe this algorithm nor the only correct O(nlogn)-time algorithm.
No proof of correctness is required.
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