
Homework 4

CS/ECE 374B

Due 8 p.m. on Tuesday, October 6

All of this has happened before and all this will happen again.

1. Solve the following recurrences. For parts (a) and (b), give an exact solution. For parts (c) and (d), give an
asymptotic one. In both cases, justify your solution.

(a)(2) A(n) = A(n− 1) + 2n− 1; A(0) = 0

(b)(3) B(n) = B(n− 1) +
�n

2

�

; B(0) = 0

(c)(2) C(n) = C(n/2) + C(n/3) + C(n/6) + n

(d)(3) D(n) = D(n/2) + D(n/3) + D(n/6) + n2

2. In class, we discussed the recursive algorithm for the Towers of Hanoi problem.

def hanoi(ndisks, source, dest, tmp):
""" Move ‘ndisks‘ from the ‘source‘ tower to the ‘dest‘ tower,
using the ‘tmp‘ tower as temporary space """
if ndisks > 0:

recursively move stack of ndisks−1 disks to tmp tower
hanoi(ndisks−1, source, tmp, dest)
move one disk from source to destination
moveone(source, dest)
recursively move stack of ndisks−1 disks to dest tower
hanoi(ndisks−1, tmp, dest, source)

else:
pass # do nothing

In the following, assume that the towers are numbered 0, 1, 2 and the standard task is to move n disks from
tower 0 to tower 1 (i.e., hanoi(n,0,1,2))

(a)(5) Suppose that moveone had a restriction that either the source or the destination must be tower 0. Modify
the recursive algorithm to abide by this restriction. Analyze exactly how many calls to moveone are
needed to move n disks in your solution.

(b)(5) Suppose instead that you are give another call, moveall that can move an entire stack of disks from
one tower to another, but moveall can only be called to move disks from tower 2. I.e., you may call
moveall(2,0) or moveall(2,1), using it with any other arguments will cause an error.
Modify the algorithm to take advantage of moveall. Calculate the exact number of calls to moveone and
moveall your algorithm makes for n disks.

3. (a)(3) Suppose you have a string of n Christmas lights, numbered 1, . . . , n that are wired in series. One of
the lights is broken and you want to find out which. You have a multimeter that you can use to test
whether any section of the string works. I.e., test(i, j) returns True if lights i through j (inclusive) are all
working, and False if one of them is broken. Design a recursive algorithm to identify the broken light
(you should assume there is exactly one) and analyze its runtime. For full credit your algorithm should
make a sublinear number of calls to test (i.e., o(n)).

1

(b)(3) Suppose now that up to k lights may be broken. Modify your algorithm to find all the broken lights. How
big can k be before your algorithm is no longer faster than testing each light?

(c)(4) In cryptography, an RSA key is the product of two large primes, n= pq. Each key ni should use its own,
randomly generated primes pi and qi; however, due to flaws in random number generators occasionally
two keys will share one or both factors.1 For any two correctly generated keys, gcd(ni , n j) = 1, but if
keys share a factor then gcd(ni , n j) 6= 1.
You are given a large collection of t keys, n1, . . . , nt and want to find out whether any of them share a
factor. Since GCD takes time to compute, you can use a batch approach to speed up your computation.
batchgcd(i, j, k, l) computes the GCD of two batches of keys:

batchgcd(i, j, k, l) = gcd

� j
∏

m=i

nm,
l
∏

m=k

nm

�

If batchgcd(i, j, k, l) 6= 1 then one of keys ni , . . . , n j shares a factor with one of the keys nk, . . . , nl . (Note
that you will want your two batches to be non-overlapping, since a key ni always shares prime factors
with itself. I.e., you should have 1≤ i ≤ j < k ≤ l ≤ t.)
Design a recursive algorithm that finds a pair of keys with a shared factor in your collection of t keys
and analyze its runtime. Your algorithm may assume there is exactly one such pair. For full credit your
algorithm should make o(t2) calls to batchgcd, which you can assume take constant time.

(d)(0) (Not to submit.) Can you modify the algorithm to find all pairs of keys with a shared factor without the
assumption that there is exactly one?

(e)(0) (Not to submit.) Analyze the runtime of your algorithm if batchgcd takes logarithmic time in the size of
the batches, i.e., Θ(log(j − i) + log(l − k))?

Solved Problem

4. Suppose we are given two sets of n points, one set {p1, p2, . . . , pn} on the line y = 0 and the other
set {q1, q2, . . . , qn} on the line y = 1. Consider the n line segments connecting each point pi to the
corresponding point qi . Describe and analyze a divide-and-conquer algorithm to determine how many
pairs of these line segments intersect, in O(n log n) time. See the example below.

q1 q4 q7 q3q5 q2 q6

p1 p4p7 p3 p5p2p6
Seven segments with endpoints on parallel lines, with 11 intersecting pairs.

Your input consists of two arrays P[1 .. n] and Q[1 .. n] of x-coordinates; you may assume that all 2n
of these numbers are distinct. No proof of correctness is necessary, but you should justify the running
time.

Solution: We begin by sorting the array P[1 .. n] and permuting the array Q[1 .. n] to maintain corre-
spondence between endpoints, in O(n log n) time. Then for any indices i < j, segments i and j intersect
if and only if Q[i] > Q[j]. Thus, our goal is to compute the number of pairs of indices i < j such that
Q[i]>Q[j]. Such a pair is called an inversion.

We count the number of inversions in Q using the following extension of mergesort; as a side effect,
this algorithm also sorts Q. If n< 100, we use brute force in O(1) time. Otherwise:

• Recursively count inversions in (and sort) Q[1 .. bn/2c].
1See N. Heninger, Z. Durumeric, E. Wustrow, and J.A. Halderman, “Mining Your Ps and Qs: Detection of Widespread Weak Keys in Network

Devices,” in Proceedings of 21st USENIX Security Symposium, 2012. https://factorable.net

Page 2

https://factorable.net

• Recursively count inversions in (and sort) Q[bn/2c+ 1 .. n].
• Count inversions Q[i]>Q[j] where i ≤ bn/2c and j > bn/2c as follows:

– Color the elements in the Left half Q[1 .. n/2] bLue.
– Color the elements in the Right half Q[n/2+ 1 .. n] Red.
– Merge Q[1 .. n/2] and Q[n/2+ 1 .. n], maintaining their colors.
– For each blue element Q[i], count the number of smaller red elements Q[j].

The last substep can be performed in O(n) time using a simple for-loop:

COUNTREDBLUE(A[1 .. n]):
count← 0
total← 0

for i← 1 to n
if A[i] is red

count← count+ 1
else

total← total+ count
return total

In fact, we can execute the third merge-and-count step directly by modifying the MERGE algorithm,
without any need for “colors”. Here changes to the standard MERGE algorithm are indicated in red.

MERGEANDCOUNT(A[1 .. n], m):
i← 1; j← m+ 1; count← 0; total← 0

for k← 1 to n
if j > n

B[k]← A[i]; i← i + 1; total← total+ count
else if i > m

B[k]← A[j]; j← j + 1; count← count+ 1
else if A[i]< A[j]

B[k]← A[i]; i← i + 1; total← total+ count
else

B[k]← A[j]; j← j + 1; count← count+ 1

for k← 1 to n
A[k]← B[k]

return total

We can further optimize this algorithm by observing that count is always equal to j −m− 1. (Proof:
Initially, j = m+ 1 and count= 0, and we always increment j and count together.)

MERGEANDCOUNT2(A[1 .. n], m):
i← 1; j← m+ 1; total← 0

for k← 1 to n
if j > n

B[k]← A[i]; i← i + 1; total← total+ j −m − 1
else if i > m

B[k]← A[j]; j← j + 1
else if A[i]< A[j]

B[k]← A[i]; i← i + 1; total← total+ j −m − 1
else

B[k]← A[j]; j← j + 1

for k← 1 to n
A[k]← B[k]

return total

The modified MERGE algorithm still runs in O(n) time, so the running time of the resulting modified
mergesort still obeys the recurrence T (n) = 2T (n/2) +O(n). We conclude that the overall running time
is O(n log n), as required. �

Page 3

Rubric: 10 points = 2 for base case + 3 for divide (split and recurse) + 3 for conquer (merge
and count) + 2 for time analysis. Max 3 points for a correct O(n2)-time algorithm. This is neither
the only way to correctly describe this algorithm nor the only correct O(n log n)-time algorithm.
No proof of correctness is required.

Page 4

