
CS/ECE 374 B — Fall 2019
Homework 7

Due Tuesday, November 12 at 8 p.m.

1. (a) Suppose that you have a graph G = (V, E) where each node is labeled with a digit; i.e.,
there is a function label : V → {0, . . . , 9}. Design an efficient algorithm that, given
two nodes, s, t ∈ V , decides whether there is a path from s to t in which the node
labels follow the pattern 374374 . . .. I.e., if the path is s = v0→ v1→ ·· · → vn = t,
then the label of vi is 3 if i mod 3≡ 0, 7 if i mod 3≡ 1, and 4 if i mod 3≡ 2.

Solution: We can simply use a modified DFS algorithm to decide whether there is a
path with the pattern 374374...

1: function Pattern(G, Visi ted, v, t, prev)
2: Visi ted[v] = True
3: if v = t then
4: return True
5: if prev = 3 then
6: nex t = 7
7: else if prev = 7 then
8: nex t = 4
9: else if prev = 4 then
10: nex t = 3

temp = False
11: for each edge vw do
12: if label(w) = nex t and Visi ted[w] = False then
13: temp = temp or Pat tern(G, Visi ted, w, t, nex t)

return temp
14: function main(G)
15: Visi ted = [False] * (len(G.nodes))
16: return Pat tern(G, Visi ted, s, t, 4)

Since the algorithm traverses the nodes and edges only once, the runtime of this
algorithm is O(|V |+ |E|)

Another option is to transform G into a directed graph G′ = (V ′, E′), where
v→ u ∈ E′ if {v, u} ∈ E and (`(v),`(u)) ∈ {(3,7), (7,4), (4,3)}. It is easy to see that
any path in G that has the label structure 374374 . . . corresponds to a path in G′. To
complete the problem, we need to verify that s has label 3; if yes, it runs DFS on G′ to
see if t is reachable, otherwise it returns false.

The transformation takes O(V + E) time and the DFS also takes O(V + E), so the
overall complexity is O(V + E). �

(b) Suppose now that the labels are on edges instead of vertices; i.e., label : E→ {0, . . . , 9}.
Design an algorithm that reduces this problem to the previous part, i.e., calls the
previous part as a subroutine.
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Solution: Since now the labels are on edges instead of vertices, we have to reconstruct
a graph that has labels on the vertices. The straightforward mapping would be to
create a vertex in the new graph for each edge; however, this presents a slight problem:
suppose ab, bc, and bd are edges in G, then a → b → c and c → b → d are both
valid paths. This would suggest that the vertex representing bc should have an edge
with both ab and bd, but this creates the possibility of the path in G′ ab→ bc→ bd,
which does not correspond to a valid path in G. Instead, we a vertex for each direction
of an edge: V ′ = {(u, v)|uv ∈ E}. Now we can have an edge between (u, v) and (v, w)
but we have make sure that it’s only taken in one direction. Fortunately, the pattern
of the paths accepted in part (a) helps us ensure that; if the label on uv is 3 and the
label on vw is 7, we add a G′ edge between (u, v) and (v, w); on the other hand, if
the label on uv is 7 the label on vw is 3, we do not add the edge.

Now a path that in G′ that satisfies the requirements of part (a) corresponds to a
walk in G. (Note that vertices and even edges can be repeated.) We can now use part
(a) to find a path from an edge of the form (s, x) to an edge of the form (y, t). The
last challenge is that there can be as many as O(v) such edges, so the naive strategy
of calling part (a) for all pairs of such edges is not efficient. Instead we modify the
graph by adding special nodes t3, t7, t4 and s3, s7, s4 with the labels corresponding
to their index. t3, t7, and t4 are connected to each node of the form (y, t). s4 is
connected to all edges of the form (s, x) with label 3, and we add edges s3s7 and s7s4
to set up a “runway”. Now we simply run the algorithm of part (a) 3 times to see if
there is a path from s3 to one of t3, t7 or t4.

Below is a figure showing an original graph G and the modified graph G′.
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Note that |V ′|= O(|E|) and |E′|= O(|V |3). (Each edge in E′ between (u, v) and
(v, w) corresponds to a triplet of vertices in V ). The transformation is linear in G′,
and the execution of part (a) takes O(|V ′|+ |E′|) = O(|E|+ |V |3) = O(|V |3) �

(c) Going back to vertex labels, design an algorithm to see if there is a path from s to t
where the sequence of vertex labels matches a regular expression r (over the alphabet
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{0, . . . , 9}.

Solution: Since r is a regular expression, it can be represented as a DFA M . Let Q
be a set of states of the DFA M . We can reconstruct a graph G′ = (V ′, E′) such that

• for each vertex u ∈ V , (u, q) ∈ V ′, where q ∈Q,and label((u, q)) = label(u)
• for each edge u → v ∈ E, (u, q) → (v,δ(q, c)) ∈ E′ where c = label(v) and

q ∈Q.

Now we can just run DFS to find a path from (s, s′) to (t, a) where s′ is a starting
state in DFA and a ∈ A. Since |Q| is a constant, the runtime of the algorithm is
O(|V |+ |E|).

Note that, as in the previous part, a path in G′ could correspond to a walk in G
since there are multiple vertices in G′ that correspond to a vertex in G.

�

2. Solve problem 11 in Chapter 6 of the textbook (both parts)

(a) Solution: We can reduce this problem to a cycle detection problem in a directed
graph G = (V, E) as follows:

• The vertices of G corresponds to variables in the parallel assignment. (eg. a, b, x,
y).

• The edges of G corresponds to dependencies of the parameters. For each sub
assignment in the parallel assignment, we construct edges pointing from the
right side variables to the left side variable. For example, if a = b + c, we create
two edges b->a and c->a.

• We do not need to associate additional values with the vertices or edges.
• We need to do cycle detection in this directed graph.
• We can solve this problem using Depth-First search.
• The algorithm runs in O(|V|+|E|) time.

The following algorithm IsAcyclic will return true if the directed graph has a cycle,
meaning we need to use an additional temporary variables to serialize the given
parallel assignment, or false if the directed graph does not have a cycle, meaning we
need no additional temporary variables.
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1: function IsAcyclic(G)
2: for all vertices v do
3: v.status = N EW
4: for all vertices v do
5: if v.status = N EW then
6: if IsAcyclicDFS(v) == False then
7: return False

return True
8:
9: function IsAcyclicDFS(v)
10: v.status = AC T IV E
11: for each edge v−> w do
12: if w.status == AC T IV E then
13: return False
14: else if w.status == N EW then
15: if IsAcyclicDFS(w) == False then
16: return False
17: v.status = F IN ISHED
18: return True

�

(b) Solution: We can test if a given parallel assignment can be serialized with exactly
one additional temporary variable by applying the following method. First, in order
for the assignment to need at least one temporary variable, the graph must have
a strongly connected component of size larger than one. Then, for all strongly
connected components in the graph, remove each node and its corresponding edges in
that strongly connected component, and test if the remaining graph is a DAG. If there
exists a node in each SCC such that after removing the node, the remaining graph is
a DAG, we can say the given parallel assignment can be serialized with exactly one
temporary variable. We construct a directed graph G = (V, E) as follows:

• The vertices of G corresponds to variables in the parallel assignment. (eg. a, b, x,
y).

• The edges of G corresponds to dependencies of the parameters. For each sub
assignment in the parallel assignment, we construct edges pointing from the
right side variables to the left side variable. For example, if a = b + c, we create
two edges b->a and c->a.

• We do not need to associate additional values with the vertices or edges.
• We need to first computes strongly connected components in G using Kosaraju and

Sharir’s Algorithm in Jeff’s note. Then, for each strongly connected component,
we loop through all its node and test if the remaining graph is a DAG after
removing that node and its corresponding edges.

• Kosaraju and Sharir’s Algorithm and IsAcyclic run in O(|V|+|E|) time. Since
we call IsAcyclic for each vertex, the whole algorithm runs in O(|V|*(|V|+|E|))
time.

Please refer to Jeff’s note for the detailed implementation of Kosaraju and Sharir’s
Algorithm. For the following algorithm, we can assume we have already computed all
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strongly connected components. If the algorithm returns true, then the given parallel
assignment can be serialized with exactly one additional temporary variable, else no.
G-v demote the graph obtained from G by deleting vertex v and its related edges.
Function IsAcyclic is from problem 2a.

1: function isOneVariable(G)
2: atleastOne = false
3: for each strongly connected component do
4: if size of the SCC > 1 then
5: atleastOne = true
6: dag = false
7: for each node in SCC do .

8: if IsAcyclic(G-v) then
9: dag = true
10: break
11: if !dag then
12: return false
13: return true and atleastOne

�

3. Solve problem 15 in Chapter 6 of the textbook.

Solution (1): This is a solution using dynamic programming based on a 2D array.
In order to simplify the later steps and transformation to Dynamic Programming, assume
the list X is sorted increasingly and (X [i], Y [i]) still represents the same set of points as
the unsorted input.
Define a recursive function LongestPath(X,Y,i) which calculates the length of the longest
monotonically increasing path in the given list of points, X , Y starting from the points
(X [i], Y [i]). The function is recursively defined as follow

LongestPath(X , Y, i) = max{LongestPath(X , Y, j) + Leng th(X [i], Y [i], X [ j], Y [ j])

| f or j ∈ [i, n], Y [ j]> Y [i]}

The idea behind this recursion is that the longest monotonically increasing path starting
from a certain point (X [i], Y [i]) is the longest among all paths starting from points on
the top right of it plus the path to them. The final result will be the maximum among all
longest paths from every point.
Now we need to transfer this backtracking algorithm into a DP solution. We can observe
that each recursive function call at (X [i], Y [i]) only depends the j that is greater than i, so
we can use an 1D array to store the return value for the recursive LongestPath(X,Y,i).
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1: function LongestPathDP(X , Y )
2: Initialize L[n]← 0
3: for i← [n, 1] do
4: for j← [n, i] do
5: if Y [ j]> Y [i] then
6: L[i] = max(L[i], L[ j] + Leng th(X [i], Y [i], X [ j], Y [ j]))
7: return max(L)
8:

This DP algorithms have two nested loop each looping O(n) times. If we assume
Length() have a constant run time, then the run time for the overall algorithm is O(n2).
The assumption we made about X being sorted can be accomplished within O(n2) time as
well so it does not affect the overall run time complexity. �

Solution (2): This is a solution using DAG.
We first convert the two arrays given X , Y into a DAG that contains information about the
relative position among the points.
We build a Graph G = (V, E), where each v ∈ V represents a point given with identifier
v.i representing their place in the input arrays and two attributes (v.X , v.Y ) representing
its coordinates. Add two extra vertices s, t with identifier 0 and n+ 1 and corresponding
coordinates (−∞,−∞) and (∞,∞) as the start and end point for all paths.
For two vertices u, v ∈ V , there exists an edge e = (u, v) if u.X < v.X , u.Y < u and its
weight is assigned with Leng th(v.X , v.Y, u.X , u.Y ). Let w(u, v) denotes the weight of
e = (u, v) ∈ E and any edge from or to s or t has zero weight.
The graph is acyclic because each path is contains strictly increasing vertices identifier, i.e.,
coordinates in a 2D space.
Then the problem is transferred into a longest path problem in a DAG which can be solve
using textbook 6.4. The longest path we are looking for starts from s and ends at t. We
can define a recursive function LLP(v) which denotes the length of the longest path in F
from v to t. It satisfies the following recurrence

LLP(v) =

¨

0 i f v = t

maxw(v, w) + LLP(w)|(v, w) ∈ E else

The first function call will be LLP(s).

Obviously, LLP(v) only depends on the vertices behind v in the topological order, so
we can transform the above recurrence into a dynamic programming solution.
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1: function LongestPathGraphDP(V, E)
2: initializa LLP[n]←−∞
3: Vsor ted ← topological sor ted V
4: for v ∈ Vsor ted backward do
5: for (v, w) ∈ E, v, w ∈ V do
6: LLP[v] = max LLP[v], w(v, w) + LLP[w]
7: return LLP[0]
8:

The algorithm runs in O(|E|+ |V |) time, where |E|= O(n2), |v|= O(n), so the overall
run time is also O(n2). Two solutions are equivalent in terms of efficiency.

�

Solved Problem

4. Professor McClane takes you out to a lake and hands you three empty jars. Each jar holds
a positive integer number of gallons; the capacities of the three jars may or may not be
different. The professor then demands that you put exactly k gallons of water into one of
the jars (which one doesn’t matter), for some integer k, using only the following operations:

(a) Fill a jar with water from the lake until the jar is full.
(b) Empty a jar of water by pouring water into the lake.
(c) Pour water from one jar to another, until either the first jar is empty or the second jar

is full, whichever happens first.

For example, suppose your jars hold 6, 10, and 15 gallons. Then you can put 13 gallons of
water into the third jar in six steps:

• Fill the third jar from the lake.
• Fill the first jar from the third jar. (Now the third jar holds 9 gallons.)
• Empty the first jar into the lake.
• Fill the second jar from the lake.
• Fill the first jar from the second jar. (Now the second jar holds 4 gallons.)
• Empty the second jar into the third jar.

Describe and analyze an efficient algorithm that either finds the smallest number
of operations that leave exactly k gallons in any jar, or reports correctly that obtaining
exactly k gallons of water is impossible. Your input consists of the capacities of the three
jars and the positive integer k. For example, given the four numbers 6,10, 15 and 13 as
input, your algorithm should return the number 6 (for the sequence of operations listed
above).
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Solution: Let A, B, C denote the capacities of the three jars. We reduce the problem to
breadth-first search in the following directed graph:

• V =
�

(a, b, c)
�

� 0≤ a ≤ p and 0≤ b ≤ B and 0≤ c ≤ C
	

. Each vertex corresponds
to a possible configuration of water in the three jars. There are (A+1)(B+1)(C+1) =
O(ABC) vertices altogether.

• The graph has a directed edge (a, b, c)�(a′, b′c′) whenever it is possible to move from
the first configuration to the second in one step. Specifically, there is an edge from
(a, b, c) to each of the following vertices (except those already equal to (a, b, c)):

– (0, b, c) and (a, 0, c) and (a, b, 0)— dumping a jar into the lake
– (A, b, c) and (a, B, c) and (a, b, C)— filling a jar from the lake

–

¨

(0, a+ b, c) if a+ b ≤ B

(a+ b− B, B, c) if a+ b ≥ B

«

— pouring from the first jar into the second

–

¨

(0, b, a+ c) if a+ c ≤ C

(a+ c − C , b, C) if a+ c ≥ C

«

— pouring from the first jar into the third

–

¨

(a+ b, 0, c) if a+ b ≤ A

(A, a+ b− A, c) if a+ b ≥ A

«

— pouring from the second jar into the first

–

¨

(a, 0, b+ c) if b+ c ≤ C

(a, b+ c − C , C) if b+ c ≥ C

«

— pouring from the second jar into the third

–

¨

(a+ c, b, 0) if a+ c ≤ A

(A, b, a+ c − A) if a+ c ≥ A

«

— pouring from the third jar into the first

–

¨

(a, b+ c, 0) if b+ c ≤ B

(a, B, b+ c − B) if b+ c ≥ B

«

— pouring from the third jar into the second

Since each vertex has at most 12 outgoing edges, there are at most 12(A+ 1)×
(B + 1)(C + 1) = O(ABC) edges altogether.

To solve the jars problem, we need to find the shortest path in G from the start vertex
(0, 0,0) to any target vertex of the form (k, ·, ·) or (·, k, ·) or (·, ·, k). We can compute this
shortest path by calling breadth-first search starting at (0,0, 0), and then examining every
target vertex by brute force. If BFS does not visit any target vertex, we report that no
legal sequence of moves exists. Otherwise, we find the target vertex closest to (0,0, 0) and
trace its parent pointers back to (0, 0,0) to determine the shortest sequence of moves. The
resulting algorithm runs in O(V + E) = O(ABC) time.

We can make this algorithm faster by observing that every move either leaves at least
one jar empty or leaves at least one jar full. Thus, we only need vertices (a, b, c) where
either a = 0 or b = 0 or c = 0 or a = A or b = B or c = C; no other vertices are reachable
from (0,0, 0). The number of non-redundant vertices and edges is O(AB + BC + AC).
Thus, if we only construct and search the relevant portion of G, the algorithm runs in
O(AB + BC + AC) time. �
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Rubric (for graph reduction problems): 10 points:
• 2 for correct vertices
• 2 for correct edges

–½ for forgetting “directed”

• 2 for stating the correct problem (shortest paths)
– “Breadth-first search” is not a problem; it’s an algorithm.

• 2 points for correctly applying the correct algorithm (breadth-first search)
–1 for using Dijkstra instead of BFS

• 2 points for time analysis in terms of the input parameters.
• Max 8 points for O(ABC) time; scale partial credit
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