
CS/ECE 374 B — Fall 2019
Homework 7

Due Tuesday, November 12 at 8 p.m.

1. (a) Suppose that you have a graph G = (V, E) where each node is labeled with a digit; i.e.,
there is a function label : V → {0, . . . , 9}. Design an efficient algorithm that, given
two nodes, s, t ∈ V , decides whether there is a path from s to t in which the node
labels follow the pattern 374374 . . .. I.e., if the path is s = v0→ v1→ ·· · → vn = t,
then the label of vi is 3 if i mod 3≡ 0, 7 if i mod 3≡ 1, and 4 if i mod 3≡ 2.

(b) Suppose now that the labels are on edges instead of vertices; i.e., label : E→ {0, . . . , 9}.
Design an algorithm that reduces this problem to the previous part, i.e., calls the
previous part as a subroutine.

(c) Going back to vertex labels, design an algorithm to see if there is a path from s to t
where the sequence of vertex labels matches a regular expression r (over the alphabet
{0, . . . , 9}.

2. Solve problem 11 in Chapter 6 of the textbook (both parts)

3. Solve problem 15 in Chapter 6 of the textbook.

Solved Problem

4. Professor McClane takes you out to a lake and hands you three empty jars. Each jar holds
a positive integer number of gallons; the capacities of the three jars may or may not be
different. The professor then demands that you put exactly k gallons of water into one of
the jars (which one doesn’t matter), for some integer k, using only the following operations:

(a) Fill a jar with water from the lake until the jar is full.
(b) Empty a jar of water by pouring water into the lake.
(c) Pour water from one jar to another, until either the first jar is empty or the second jar

is full, whichever happens first.

For example, suppose your jars hold 6, 10, and 15 gallons. Then you can put 13 gallons of
water into the third jar in six steps:

• Fill the third jar from the lake.
• Fill the first jar from the third jar. (Now the third jar holds 9 gallons.)
• Empty the first jar into the lake.
• Fill the second jar from the lake.



CS/ECE 374 Homework 7 (due November 12) Fall 2019 (B)

• Fill the first jar from the second jar. (Now the second jar holds 4 gallons.)
• Empty the second jar into the third jar.

Describe and analyze an efficient algorithm that either finds the smallest number
of operations that leave exactly k gallons in any jar, or reports correctly that obtaining
exactly k gallons of water is impossible. Your input consists of the capacities of the three
jars and the positive integer k. For example, given the four numbers 6,10, 15 and 13 as
input, your algorithm should return the number 6 (for the sequence of operations listed
above).

Solution: Let A, B, C denote the capacities of the three jars. We reduce the problem to
breadth-first search in the following directed graph:

• V =
�

(a, b, c)
�

� 0≤ a ≤ p and 0≤ b ≤ B and 0≤ c ≤ C
	

. Each vertex corresponds
to a possible configuration of water in the three jars. There are (A+1)(B+1)(C+1) =
O(ABC) vertices altogether.

• The graph has a directed edge (a, b, c)�(a′, b′c′) whenever it is possible to move from
the first configuration to the second in one step. Specifically, there is an edge from
(a, b, c) to each of the following vertices (except those already equal to (a, b, c)):
– (0, b, c) and (a, 0, c) and (a, b, 0)— dumping a jar into the lake
– (A, b, c) and (a, B, c) and (a, b, C)— filling a jar from the lake

–

¨

(0, a+ b, c) if a+ b ≤ B

(a+ b− B, B, c) if a+ b ≥ B

«

— pouring from the first jar into the second

–

¨

(0, b, a+ c) if a+ c ≤ C

(a+ c − C , b, C) if a+ c ≥ C

«

— pouring from the first jar into the third

–

¨

(a+ b, 0, c) if a+ b ≤ A

(A, a+ b− A, c) if a+ b ≥ A

«

— pouring from the second jar into the first

–

¨

(a, 0, b+ c) if b+ c ≤ C

(a, b+ c − C , C) if b+ c ≥ C

«

— pouring from the second jar into the third

–

¨

(a+ c, b, 0) if a+ c ≤ A

(A, b, a+ c − A) if a+ c ≥ A

«

— pouring from the third jar into the first

–

¨

(a, b+ c, 0) if b+ c ≤ B

(a, B, b+ c − B) if b+ c ≥ B

«

— pouring from the third jar into the second

Since each vertex has at most 12 outgoing edges, there are at most 12(A+ 1)×
(B + 1)(C + 1) = O(ABC) edges altogether.

To solve the jars problem, we need to find the shortest path in G from the start vertex
(0, 0,0) to any target vertex of the form (k, ·, ·) or (·, k, ·) or (·, ·, k). We can compute this
shortest path by calling breadth-first search starting at (0,0, 0), and then examining every
target vertex by brute force. If BFS does not visit any target vertex, we report that no
legal sequence of moves exists. Otherwise, we find the target vertex closest to (0,0, 0) and
trace its parent pointers back to (0, 0,0) to determine the shortest sequence of moves. The
resulting algorithm runs in O(V + E) = O(ABC) time.

2



CS/ECE 374 Homework 7 (due November 12) Fall 2019 (B)

We can make this algorithm faster by observing that every move either leaves at least
one jar empty or leaves at least one jar full. Thus, we only need vertices (a, b, c) where
either a = 0 or b = 0 or c = 0 or a = A or b = B or c = C; no other vertices are reachable
from (0,0, 0). The number of non-redundant vertices and edges is O(AB + BC + AC).
Thus, if we only construct and search the relevant portion of G, the algorithm runs in
O(AB + BC + AC) time. �

Rubric (for graph reduction problems): 10 points:
• 2 for correct vertices
• 2 for correct edges

–½ for forgetting “directed”

• 2 for stating the correct problem (shortest paths)
– “Breadth-first search” is not a problem; it’s an algorithm.

• 2 points for correctly applying the correct algorithm (breadth-first search)
–1 for using Dijkstra instead of BFS

• 2 points for time analysis in terms of the input parameters.
• Max 8 points for O(ABC) time; scale partial credit

3


