
CS/ECE 374 B Lab 11 Solutions Fall 2019

1. Describe a modification of DFS or BFS to compute the shortest path to each node

Solution: Here is a simple modification of the BFS discussed in class.
def BFS(G,s):

""" G is a dictionary mapping
nodes to adjacency lists. E.g.:
{ ’a’ : [ ’b’, ’c’], ’b’ : [’c ’,’ a’] }

s is the source node
"""
marked = set()
d = { s : 0 }
q = Queue()
q.push(s)
while not q.empty():

v = q.pull()
marked.add(v)
# for all edges v −> u
for u in G[v]:

if u not in d:
d[u] = d[v]+1

return d

�

2. Snakes and Ladders is a classic board game, originating in India no later than the 16th
century. The board consists of an n× n grid of squares, numbered consecutively from 1
to n2, starting in the bottom left corner and proceeding row by row from bottom to top,
with rows alternating to the left and right. Certain pairs of squares, always in different
rows, are connected by either “snakes” (leading down) or “ladders” (leading up). Each
square can be an endpoint of at most one snake or ladder.
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A typical Snakes and Ladders board.
Upward straight arrows are ladders; downward wavy arrows are snakes.

You start with a token in cell 1, in the bottom left corner. In each move, you advance
your token up to k positions, for some fixed constant k (typically 6). If the token ends the
move at the top end of a snake, you must slide the token down to the bottom of that snake.
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If the token ends the move at the bottom end of a ladder, you may move the token up to
the top of that ladder.

Describe and analyze an algorithm to compute the smallest number of moves required
for the token to reach the last square of the grid.

Solution: We reduce to a shortest-path problem in a directed graph G = (V,E) as follows:

• The vertices of G correspond to cells on the board, identified by integers 1 to n2.
• The edges of G correspond to legal moves. From each cell there are at most 2k

possible moves: for each integer i from 1 to k, we can move forward i spaces, and
then if we are at the bottom of a ladder, we can either move to the top of that ladder
or not. Edges are directed.

• We do not need to associate additional values with the vertices or edges.
• We need to find the shortest path from vertex 1 to vertex n2.
• We can solve this problem using breadth-first search.
• The algorithm runs in O(V + E) = O(n2 + 2kn2) = O(kn2) time.

�
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3. Let G be a connected undirected graph. Suppose we start with two coins on two arbitrarily
chosen vertices of G. At every step, each coin must move to an adjacent vertex. Describe
and analyze an algorithm to compute the minimum number of steps to reach a configuration
where both coins are on the same vertex, or to report correctly that no such configuration
is reachable. The input to your algorithm consists of a graph G = (V,E) and two vertices
u, v ∈ V (which may or may not be distinct).

Solution (product construction): LetG = (V,E) denote the input graph, and let s and t
denote the initial locations of the two coins. We reduce to a shortest-path problem in an
undirected graph G′ = (V ′, E′) as follows:

• V ′ = V ×V = {(u, v) | u ∈ V and v ∈ V }); the vertices ofG′ correspond to possible
placements of the two coins.

• E′ = {(u, v)(u′, v′) | uu′ ∈ E and vv′ ∈ E}. The edges of G′ correspond to legal
moves by the two coins. Edges are undirected, because any move by the two coins
can be reversed.

• We do not need to associate additional values with the vertices or edges.
• We need to find the shortest-path distance from vertex (s, t) to any vertex of the form
(v, v).

• First we compute the shortest-path distance from (s, t) to every vertex in G′ that
is reachable from (s, t) using breadth-first search. Then a simple for-loop over the
vertices of the input graph G finds the minimum distance to any marked vertex of the
form (v, v). In particular, if no vertex (v, v) is reachable from (s, t), then no vertex
(v, v) will be marked by the breadth-first search, and so the algorithm will correct
report min∅ =∞.

• The resulting algorithm runs in O(V ′ + E′) = O(V 2 + E2) time.
�

Solution (parity construction): Let G = (V,E) denote the input graph, and let s and t
denote the initial locations of the two coins. Any sequence of k moves that bring the two
coins to a common vertex v defines a walk of length 2k from s through v to t. Thus, we
are looking for the shortest walk from s to t with even length. We reduce to a standard
shortest-path problem in a new graph G′ = (V ′, E′) as follows:

• V ′ = V × {0, 1} = {(v, b) | b ∈ V and b ∈ {0, 1}}).
• E′ = {(u, b)(v, 1−b) | uv ∈ E and b ∈ {0, 1}}. Then for anywalk v0�v1�v2� · · ·�v`

inG, there is a corresponding walk (v0, 0)�(v1, 1)�(v2, 0)� · · ·�(v`, ` mod 2) inG′.
Thus, every even-length walk from s to t in G corresponds to a walk in G′ from (s, 0)
to (t, 0) and vice versa.

• We do not need to associate additional values with the vertices or edges.
• We need to find the shortest-path distance in G′ from vertex (s, 0) to (t, 0).
• We can compute this shortest-path distance using breadth-first search starting at
(s, 0). In particular, if there is no even-length path from s to t in G, the breadth-first
search will not mark (t, 0).

• The resulting algorithm runs in O(V ′ + E′) = O(V + E) time.
�
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To think about later:

4. Let G be an undirected graph. Suppose we start with 374 coins on 374 arbitrarily chosen
vertices of G. At every step, each coin must move to an adjacent vertex. Describe and
analyze an efficient algorithm to compute the minimum number of steps to reach a
configuration where both coins are on the same vertex, or to report correctly that no such
configuration is reachable. The input to your algorithm consists of a graph G = (V,E) and
starting vertices s1, s2, . . . , s374 (which may or may not be distinct).

Solution: This is a hint rather than a solution. Construct a graph G′ = (V ′, E′) to model
the problem. Each vertex v ∈ V ′ corresponds to a tuple of 374 vertices of V . What should
the edges be to model the moves of the game? �
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