
CS/ECE 374 B Lab 13 Solutions Fall 2019

1. Recall the class scheduling problem described in lecture on Tuesday. We are given two
arrays S[1 .. n] and F [1 .. n], where S[i] < F [i] for each i, representing the start and finish
times of n classes. Your goal is to find the largest number of classes you can take without
ever taking two classes simultaneously.

For each of the following greedy algorithms, either prove that the algorithm always con-
structs an optimal schedule, or describe a small input example for which the algorithm does
not produce an optimal schedule. Assume that all algorithms break ties arbitrarily (that
is, in a manner that is completely out of your control). Exactly three of these greedy
strategies actually work.

(a) Choose the course x that ends last, discard classes that conflict with x, and recurse.

Solution: This doesn’t work. Given the input , the greedy algo-
rithm chooses the single long course, but the optimal schedule contains all the short
courses. �

(b) Choose the course x that starts first, discard all classes that conflict with x, and
recurse.

Solution: This doesn’t work. Given the input , the greedy algo-
rithm chooses the single long course, but the optimal schedule contains all the short
courses. �

(c) Choose the course x that starts last, discard all classes that conflict with x, and recurse.

Solution: This greedy strategy works! In fact, this is just a time-reversed version of
the greedy algorithm proved correct in class. Correctness follows by induction from
the following claim:

Claim 1. There is an optimal schedule that includes the course that starts last.

Proof: Let x be the course that starts last. Let S be any schedule that does not
contain x, and let z be the last course in S. Because x starts last, we have S[z] < S[x].
Thus F [i] < S[z] < S[x] for every other class i in S, which implies that S′ = S−z+x
is still a valid schedule, containing the same number of classes as S. In particular, if
S is an optimal schedule, then S′ is an optimal schedule containing x. �

�

(d) Choose the course x with shortest duration, discard all classes that conflict with x, and
recurse.

Solution: This doesn’t work. Given the input , this greedy algo-
rithm chooses the single course in the middle, but the optimal schedule contains the
other two courses. �

(e) Choose a course x that conflicts with the fewest other courses, discard all classes that
conflict with x, and recurse.

1



CS/ECE 374 B Lab 13 Solutions Fall 2019

Solution: This doesn’t work. Given the input , this greedy algo-
rithm would choose the course in the center, which has only two conflicts, and thus
would return a schedule containing only three courses. But the optimal schedule
contains four courses. �

(f) If no classes conflict, choose them all. Otherwise, discard the course with longest
duration and recurse.

Solution: This doesn’t work. Given the intervals , the greedy
algorithm chooses the single interval in the middle, but the optimal schedule contains
the other two intervals. �

(g) If no classes conflict, choose them all. Otherwise, discard a course that conflicts with
the most other courses and recurse.

Solution: This doesn’t work. Given the input , this greedy algo-
rithm would discard one of the courses in the middle of the bottom row, which has
only five conflicts, and thus would return a schedule containing only three courses.
But the optimal schedule contains four courses. �

(h) Let x be the class with the earliest start time, and let y be the class with the second
earliest start time.

• If x and y are disjoint, choose x and recurse on everything but x.
• If x completely contains y, discard x and recurse.
• Otherwise, discard y and recurse.

Solution: This greedy strategy works! We need to prove three claims, one for each
case.

Claim 2. If x and y are disjoint, then every optimal schedule contains x.

Proof: If x and y are disjoint, then F [x] < S[y], which ipmlues that F [x] < S[i] for
all i 6= x. Thus, if S is any valid schedule that does not contain x, then S + x is a
larger valid schedule. Thus, no optimal schedule excludes x. �

Claim 3. If x contains y, there is an optimal schedule that excludes x.

Proof: If x contains y, then every class that conflicts with y also conflicts with x. Thus,
for any valid schedule S that contains x, there is another valid schedule S − x+ y of
the same size that excludes x. �

Claim 4. If x and y overlap, but x does not contain y, there is an optimal schedule
that excludes y.

Proof: Suppose x and y overlap, but x does not contain y. Then x must end before
y ends, and therefore every class that conflicts with x also conflicts with y. Thus, for
any valid schedule S that contains y, there is another valid schedule S − y + x of the
same size that excludes y. �

The correctness of this greedy strategy now follows by induction. �

2



CS/ECE 374 B Lab 13 Solutions Fall 2019

(i) If any course x completely contains another course, discard x and recurse. Otherwise,
choose the course y that ends last, discard all classes that conflict with y, and recurse.

Solution: This strategy actually works!

Claim 5. If any course x contains another course y, there is an optimal schedule that
does not include x.

Proof: Let S be any valid schedule that contains x. Then S − x+ y is another valid
schedule of the same size. �

Claim 6. Suppose no course contains any other course. Then there is an optimal
schedule containing the course that ends last.

Proof: If no course contains any other course, then the class that ends last is also the
class that starts last. This claim now follows from Claim 1 (in problem 3). �

The correctness of this greedy strategy now follows by induction. �

3



CS/ECE 374 B Lab 13 Solutions Fall 2019

2. A party of n people have come to dine at a fancy restaurant and each person has ordered
a different item from the menu. Let D1, D2, . . . , Dn be the items ordered by the diners.
Since this is a fancy place, each item is prepared in a two-stage process. First, the head
chef (there is only one head chef) spends a few minutes on each item to take care of the
essential aspects and then hands it over to one of the many sous-chefs to finish off. Assume
that there are essentially an unlimited number of sous-chefs who can work in parallel on
the items once the head chef is done. Each item Di takes hi units of time for the head chef
followed by si units of time for the sous-chef (the sous-chefs are all identical). The diners
want all their items to be served at the same time which means that the last item to be
finished defines the time when they can be served. The goal of the restaurant is to serve the
diners as early as possible. Consider the following greedy algorithms that order the items
according to different criteria. For each of them either describe a counter example that
shows that the order does not yield an optimum solution or give a proof that the ordering
yields an optimum solution for all instances.

• Order the items in increasing order of hi + si.

• Order the items in decreasing order of hi + si.

• Order the items in increasing order of hi.

• Order the items in decreasing order of hi.

• Order the items in increasing order of si.

• Order the items in decreasing order of si.

Solution: The last option gives an optimal schedule. One can find counter examples for
all the others with just two items. We leave it as an exercise to find them.

We will first prove that ordering the items in decreasing order of si is optimal. Assume
without loss of generality that the items are numbered such that s1 ≥ s2 ≥ . . . ≥ sn.
Let S = i1, i2, . . . , in an optimum ordering of items with fewest inversions. If there no
inversions in this ordering then we are done. Otherwise there are two adjecent items in
the ordering i` and i`+1 such that i` > i`+1. Consider swapping these items to obtain a
new ordering S′. Let fi` and f ′

i`
denote the finish times of i` in S and S′ and similarly

fi`+1
and f ′

i`+1
. Note that no other items are affected by the swapm. Letting t denote the

time at which i` is started by the head chef in S we observe that fi` = t+ hi` + si` and
fi`+1

= t + hi` + hi`+1
+ si`+1

. After the swap we have f ′
i`
= t + hi` + hi`+1

+ si` and
f ′
i`+1

= t+ hi`+1
+ si`+1

. Since si` ≤ si`+1
we have

max{f ′
i`
, f ′

i`+1
} = max{t+hi`+hi`+1

+si` , t+hi`+1
+si`+1

} ≤ t+hi`+hi`+1
+si`+1

= max{fi` , fi`+1
}.

This implies that the new ordering is no worse than the previous one (why?) but has one
fewer inversion contradicting the choice of the ordering S as the an optimum schedule
with the fewest inversions.

�

4


