
CS/ECE 374 B Lab 13 ½Solutions Fall 2019

1. Suppose you are given a magic black box that somehow answers the following decision
problem in polynomial time:

• Input: A CNF formula ϕ with n variables x1, x2, . . . , xn.
• Output: True if there is an assignment of True or False to each variable that

satisfies ϕ.

Using this black box as a subroutine, describe an algorithm that solves the following related
search problem in polynomial time:

• Input: A CNF formula ϕ with n variables x1, . . . , xn.
• Output: A truth assignment to the variables that satisfies ϕ, or None if there is no

satisfying assignment.

[Hint: You can use the magic box more than once.]

Solution: For any CNF formula ϕ with variables x1, . . . , xn, let ϕxi=1 be the CNF formula
obtained from ϕ by setting xi to True and simplifying the formula; if xi is a literal in a
clause C we remove the clause C from the formula, and if ¬xi is a literal in a clause C we
remove the ¬xi from the clause (note that if C contains only ¬xi then we obtain an empty
clause which we interpret as not being satisfiable by any assignment). Similarly, let ϕxi=0

be the CNF formula obtained from ϕ by setting xi to False and simplifying.

Suppose Sat(ϕ) returns True if ϕ is satisfiable and False otherwise. Then the following
algorithm constructs a satisfying assignment for ϕ or correctly reports that no such
assignment exists.

SatAssignment(ϕ):
if SAT(ϕ) = False

return None
for i← 1 to n

if SAT(ϕxi=1)
ϕ← ϕxi=1

A[i]← True
else

ϕ← ϕxi=0

A[i]← False
return A[1 .. n]

The correctness of this algorithm follows by induction from the following observation:

Claim 1. The CNF formula ϕxi=1 is satisfiable if and only if ϕ has a satisfying assignment
where xi = True.

Proof: First, if ϕxi=1 has a satisfying assignment, then we can augment that satisfying
assignment by setting xi = True and this will satisfy ϕ (note that the only clauses we
removed from ϕ to obtain ϕxi=1 have xi in them, and hence setting xi = True will satisfy
all those clauses).

On the other hand, if ϕ has a satisfying assignment where xi = True, then that
assignment restricted to the variables other than xi will satisfy ϕxi=1; the reasoning is
tedious. �

1

CS/ECE 374 B Lab 13 ½Solutions Fall 2019

The algorithm runs in polynomial time. Specifically, suppose Sat(ϕ) runs in O(N c)
time, where N the total size of ϕ (sum of the clause sizes). Then SatAssignment(ϕ) runs
in time O(nN c) since the formula size is only decreasing in each iteration and there are at
most n iterations. �

2

CS/ECE 374 B Lab 13 ½Solutions Fall 2019

2. An independent set in a graph G is a subset S of the vertices of G, such that no two
vertices in S are connected by an edge in G. Suppose you are given a magic black box that
somehow answers the following decision problem in polynomial time:

• Input: An undirected graph G and an integer k.

• Output: True if G has an independent set of size k, and False otherwise.

(a) Using this black box as a subroutine, describe algorithms that solves the following
optimization problem in polynomial time:

• Input: An undirected graph G.
• Output: The size of the largest independent set in G.

[Hint: You’ve seen this problem before.]

Solution: Suppose IndSet(V,E, k) returns True if the graph (V,E) has an inde-
pendent set of size k, and False otherwise. Then the following algorithm returns the
size of the largest independent set in G:

MaxIndSetSize(V,E):
for k ← 1 to V

if IndSet(V,E, k + 1) = False
return k

A graph with n vertices cannot have an independent set of size larger than n, so this
algorithm must return a value. If G has an independent set of size k, then it also has
an independent set of size k − 1, so the algorithm is correct.

The algorithm clearly runs in polynomial time. Specifically, if IndSet(V,E, k)
runs in O((V +E)c) time, then MaxIndSetSize(V,E) runs in O((V +E)c+1) time.

Yes, we could have used binary search instead of linear search. Whatever. �

3

CS/ECE 374 B Lab 13 ½Solutions Fall 2019

(b) Using this black box as a subroutine, describe algorithms that solves the following
search problem in polynomial time:
• Input: An undirected graph G.
• Output: An independent set in G of maximum size.

Solution (delete vertices): I’ll use the algorithmMaxIndSetSize(V,E) from part (a)
as a black box instead. Let G − v denote the graph obtained from G by deleting
vertex v, and let G−N(v) denote the graph obtained from G by deleting v and all
neighbors of v.

MaxIndSet(G):
S ← ∅
k ← MaxIndSetSize(G)
for all vertices v of G

if MaxIndSetSize(G− v) = k
G← G− v

else
G← G−N(v)
add v to S

return S

Correctness of this algorithm follows inductively from the following claims:

Claim 2. MaxIndSetSize(G− v) = k if and only if G has an independent set of size
k that excludes v.

Proof: Every independent set in G − v is also an independent set in G; it follows
that MaxIndSetSize(G− v) ≤ k.

Suppose G has an independent set S of size k that does excludes v. Then S is
also an independent set of size k in G− v, so MaxIndSetSize(G− v) is at least k,
and therefore equal to k.

On the other hand, suppose G− v has an independent set S of size k. Then S is
also a maximum independent set of G (because |S| = k) that excludes v. �

The algorithm clearly runs in polynomial time. �

Solution (add edges): I’ll use the algorithm MaxIndSetSize(V,E) from part (a) as
a black box instead. Let G+ uv denote the graph obtained from G by adding edge
uv.

MaxIndSet(G):
k ← MaxIndSetSize(G)
if k = 1

return any vertex
for all vertices u

for all vertices v
if u 6= v and uv is not an edge

if MaxIndSetSize(G+ uv) = k
G← G+ uv

S ← ∅
for all vertices v

if deg(v) < V − 1
add v to S

return S

4

CS/ECE 374 B Lab 13 ½Solutions Fall 2019

The algorithms adds every edge it can without changing the maximum independent set
size. Let G′ denote the final graph. Any independent set in G′ is also an independent
set in the original input graph G. Moreover, the largest independent set in G′ is also a
largest independent set in G. Thus, to prove the algorithm correct, we need to prove
the following claims about the final graph G′:

Claim 3. The maximum independent set in G′ is unique.

Proof: Suppose the final graph G′ has more than two maximum independent sets A
and B. Pick any vertex u ∈ A \ B and any other vertex v ∈ A. The set B is still
an independent set in the graph G′ + uv. Thus, when the algorithm considered
edge uv, it would have added uv to the graph, contradicting the assumption that A is
an independent set. �

Claim 4. Suppose k > 1. The unique maximum independent set of G′ contains
vertex v if and only if deg(v) < V − 1.

Proof: Let S be the unique maximum independent set of G′, and let v be any vertex
of G. If v ∈ S, then v has degree at most V − k < V − 1, because v is disconnected
from every other vertex in S.

On the other hand, suppose deg(v) < V − 1 but v 6∈ S. Then there must be at
least vertex u such that uv is not an edge in G′. Because v 6∈ S, the set S is still an
independent set in G′ + uv. Thus, when the algorithm considered edge uv, it would
have added uv to the graph, and we have a contradiction. �

The algorithm clearly runs in polynomial time. �

5

CS/ECE 374 B Lab 13 ½Solutions Fall 2019

To think about later:
3. Formally, a proper coloring of a graph G = (V,E) is a function c : V → {1, 2, . . . , k}, for

some integer k, such that c(u) 6= c(v) for all uv ∈ E. Less formally, a valid coloring assigns
each vertex of G a color, such that every edge in G has endpoints with different colors. The
chromatic number of a graph is the minimum number of colors in a proper coloring of G.

Suppose you are given a magic black box that somehow answers the following decision
problem in polynomial time:

• Input: An undirected graph G and an integer k.
• Output: True if G has a proper coloring with k colors, and False otherwise.

Using this black box as a subroutine, describe an algorithm that solves the following
coloring problem in polynomial time:

• Input: An undirected graph G.
• Output: A valid coloring of G using the minimum possible number of colors.

[Hint: You can use the magic box more than once. The input to the magic box is a graph
and only a graph, meaning only vertices and edges.]

Solution: First we build an algorithm to compute the minimum number of colors in any
valid coloring.

ChromaticNumber(G):
for k ← V down to 1

if Colorable(G, k − 1) = False
return k

Given a graph G = (V,E) with n vertices v1, v2, . . . , vn, the following algorithm computes
an array color[1 .. n] describing a valid coloring of G with the minimum number of colors.

Coloring(G):
k ← ChromaticNumber(G)

〈〈—— add a disjoint clique of size k ——〉〉
H ← G
for c← 1 to k

add vertex zc to G
for i← 1 to c− 1

add edge zizc to H

〈〈—— for each vertex, try each color ——〉〉
for i← 1 to n

for c← 1 to k
add edge vizc to H

for c← 1 to k
remove edge vizc from H
if Colorable(H, k) = True

color[i]← c
break inner loop

add edge vizc from H

return color[1 .. n]

6

CS/ECE 374 B Lab 13 ½Solutions Fall 2019

In any k-coloring of H , the new vertices z1, . . . , zk must have k distinct colors, because
every pair of those vertices is connected. We assign color[i]← c to indicate that there is
a k-coloring of H in which vi has the same color as zc. When the algorithm terminates,
color[1 .. n] describes a valid k-coloring of G.

To prove that the algorithm is correct, we must prove that for all i, when the ith iteration
of the outer loop ends, G has a valid k-coloring that is consistent with the partial coloring
color[1 .. i]. Fix an integer i. The inductive hypothesis implies that when the ith iteration
of the outer loop begins, G has a k-coloring consistent with the first i− 1 assigned colors.
(The base case i = 0 is trivial.) If we connect vi to every new vertices except zc, then vi
must have the same color as zc in any valid k-coloring. Thus, the call to Colorable inside
the inner loop returns True if and only if H has a k-coloring in which vi has the same
color as zc (and the previous i− 1 vertices are also colored). So Colorable must return
True during the second inner loop, which completes the inductive proof.

This algorithm makes O(kn) = O(n2) calls to Colorable, and therefore runs in
polynomial time. �

7

