CS/ECE 374 B Lab 14 Solutions Fall 2019

1. Recall the following kCoLor problem: Given an undirected graph G, can its vertices be
colored with k colors, so that every edge touches vertices with two different colors?

(a) Describe a direct polynomial-time reduction from 3CoLOR to 4COLOR.

Solution: Suppose we are given an arbitrary graph GG. Let H be the graph obtained
from G by adding a new vertex a (called an apex) with edges to every vertex of G.
I claim that G is 3-colorable if and only if H is 4-colorable.

= Suppose G is 3-colorable. Fix an arbitrary 3-coloring of G, and call the colors
“red”, “green”, and “blue”. Assign the new apex a the color “plaid”. Let uv be an
arbitrary edge in H.
— If both u and v are vertices in G, they have different colors.

— Otherwise, one endpoint of wv is plaid and the other is not, so u and v have
different colors.
We conclude that we have a valid 4-coloring of H, so H is 4-colorable.
<= Suppose H is 4-colorable. Fix an arbitrary 4-coloring; call the apex’s color “plaid”
and the other three colors “red”, “green”, and “blue”. Each edge uv in G is also
an edge of H and therefore has endpoints of two different colors. Each vertex v
in G is adjacent to the apex and therefore cannot be plaid. We conclude that by
deleting the apex, we obtain a valid 3-coloring of G, so G is 3-colorable.

We can easily transform G into H in polynomial time by brute force. |
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(b) Prove that kCoLor problem is NP-hard for any k > 3.

Solution (direct): The lecture notes include a proof that 3CoLor is NP-hard. For
any integer k£ > 3, I'll describe a direct polynomial-time reduction from 3CoLOR to
kCOLOR.

Let G be an arbitrary graph. Let H be the graph obtain from G by adding k£ — 3
new vertices ay, as, . . . , a_3, each with edges to every other vertex in H (including
the other a;’s). I claim that G is 3-colorable if and only if H is k-colorable.

— Suppose G is 3-colorable. Fix an arbitrary 3-coloring of GG. Color the new vertices
ai,ag, ..., a3 with k — 3 new distinct colors. Every edge in H is either an edge
in G or uses at least one new vertex a;; in either case, the endpoints of the edge
have different colors. We conclude that H is k-colorable.

<= Suppose H is k-colorable. Each vertex a; is adjacent to every other vertex in H,
and therefore is the only vertex of its color. Thus, the vertices of G use only
three distinct colors. Every edge of G is also an edge of H, so its endpoints
have different colors. We conclude that the induced coloring of G is a proper
3-coloring, so ( is 3-colorable.

Given G, we can construct H in polynomial time by brute force. |

Solution (induction): Let k be an arbitrary integer with £ > 3. Assume that jCoLoRr
is NP-hard for any integer 3 < j < k. There are two cases to consider.

* If k = 3, then kCoLoR is NP-hard by the reduction from 3SAT in the lecture notes.

* Suppose k = 3. The reduction in part (a) directly generalizes to a polynomial-
time reduction from (k£ — 1)CoLoR to kCoLor: To decide whether an arbitrary
graph G is (k — 1)-colorable, add an apex and ask whether the resulting graph is
k-colorable. The induction hypothesis implies that (k — 1)CoLor is NP-hard, so
the reduction implies that kCoLor is NP-hard.

In both cases, we conclude that kCoLor is NP-hard. [ |

2. A Hamiltonian cycle in a graph G is a cycle that goes through every vertex of GG exactly
once. Deciding whether an arbitrary graph contains a Hamiltonian cycle is NP-hard.

A tonian cycle in a graph G is a cycle that goes through at least half of the vertices
of G. Prove that deciding whether a graph contains a tonian cycle is NP-hard.

Solution (duplicate the graph): T'll describe a polynomial-time reduction from Hamrr.-
TONIANCYCLE. Let (G be an arbitrary graph. Let H be a graph consisting of two disjoint
copies of G, with no edges between them; call these copies G; and G. I claim that G has
a Hamiltonian cycle if and only if H has a tonian cycle.

= Suppose G has a Hamiltonian cycle C'. Let C'; be the corresponding cycle in G;. Cy
contains exactly half of the vertices of H, and thus is a tonian cycle in H.

<= On the other hand, suppose H has a tonian cycle C'. Because there are no edges
between the subgraphs (G; and G, this cycle must lie entirely within one of these
two subgraphs. G; and (G2 each contain exactly half the vertices of H, so C' must also
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contain exactly half the vertices of H, and thus is a Hamiltonian cycle in either G
or (Go. But G; and G are just copies of G. We conclude that G has a Hamiltonian
cycle.

Given GG, we can construct H in polynomial time by brute force. |

Solution (add n new vertices): I'll describe a polynomial-time reduction from HAMIL-
TONIANCYCLE. Let GG be an arbitrary graph, and suppose G has n vertices. Let H be a
graph obtained by adding n new vertices to G, but no additional edges. I claim that G has
a Hamiltonian cycle if and only if H has a tonian cycle.

= Suppose G has a Hamiltonian cycle C'. Then C visits exactly half the vertices of H,
and thus is a tonian cycle in H.

<= On the other hand, suppose H has a tonian cycle C. This cycle cannot visit any of
the new vertices, so it must lie entirely within the subgraph G. Since G contains
exactly half the vertices of H, the cycle C must visit every vertex of G, and thus is a
Hamiltonian cycle in G.

Given G, we can construct H in polynomial time by brute force. |
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To think about later:

3. Let G be an undirected graph with weighted edges. A Hamiltonian cycle in G is heavy if
the total weight of edges in the cycle is at least half of the total weight of all edges in G.
Prove that deciding whether a graph contains a heavy Hamiltonian cycle is NP-hard.

Solution (two new vertices): I'll describe a polynomial-time a reduction from the Hamil-
tonian path problem. Let G be an arbitrary undirected graph (without edge weights).
Let H be the edge-weighted graph obtained from G as follows:

¢ Add two new vertices s and ¢.
* Add edges from s and ¢t to all the other vertices (including each other).

* Assign weight 1 to the edge st and weight 0 to every other edge.

The total weight of all edges in H is 1. Thus, a Hamiltonian cycle in H is heavy if and only
if it contains the edge st. I claim that H contains a heavy Hamiltonian cycle if and only
if G contains a Hamiltonian path.

— First, suppose G has a Hamiltonian path from vertex u to vertex v. By adding the
edges vs, st, and tu to this path, we obtain a Hamiltonian cycle in H. Moreover, this
Hamiltonian cycle is heavy, because it contains the edge st.

<= On the other hand, suppose H has a heavy Hamiltonian cycle. This cycle must contain
the edge st, and therefore must visit all the other vertices in H contiguously. Thus,
deleting vertices s and ¢ and their incident edges from the cycle leaves a Hamiltonian
path in G.

Given G, we can easily construct H in polynomial time by brute force. |

Solution (smartass): I'll describe a polynomial-time a reduction from the standard Hamil-
tonian cycle problem. Let G be an arbitrary graph (without edge weights). Let H be the
edge-weighted graph obtained from G by assigning each edge weight 0. I claim that H
contains a heavy Hamiltonian cycle if and only if G contains a Hamiltonian path.

= Suppose G has a Hamiltonian cycle C'. The total weight of C' is at least half the total
weight of all edges in H, because 0 > 0/2. So C'is a heavy Hamiltonian cycle in H.

<= Suppose H has a heavy Hamiltonian cycle C. By definition, C' is also a Hamiltonian
cycle in G.

Given G, we can easily construct H in polynomial time by brute force. |



