CS/ECE 374 B Lab 9 olutions Fall 2019

Lenny Rutenbar, the founding dean of the new Maximilian Q. Levchin College of Computer
Science, has commissioned a series of snow ramps on the south slope of the Orchard Downs
sledding hill' and challenged Bill Kudeki, head of the Department of Electrical and Computer
Engineering, to a sledding contest. Bill and Lenny will both sled down the hill, each trying to
maximize their air time. The winner gets to expand their department/college into both Siebel
Center and the new ECE Building; the loser has to move their entire department/college under the
Boneyard bridge next to Everitt Lab.

Whenever Lenny or Bill reaches a ramp while on the ground, they can either use that ramp to
jump through the air, possibly flying over one or more ramps, or sled past that ramp and stay on
the ground. Obviously, if someone flies over a ramp, they cannot use that ramp to extend their
jump.

1. Suppose you are given a pair of arrays Ramp|[l .. n] and Lengthll .. n], where Rampli] is the
distance from the top of the hill to the ith ramp, and Lengthli] is the distance that any
sledder who takes the ith ramp will travel through the air.

Describe and analyze an algorithm to determine the maximum total distance that Lenny
or Bill can spend in the air.

Solution: To simplify boundary cases, let’s add a sentinel ramp at the bottom of the hill
with Ramp[n + 1] = oo.

For any index i, let Next(i) denote the smallest index j such that Ramp[j] > Ramp|i| +
Length[i]. Because the array Ramp is sorted, we can compute Next(:) for any index ¢ in
O(logn) time using binary search.

Now let MaxAir(i) denote the maximum distance any sledder can spend in the air
starting on the ground at the ith ramp. We need to compute MaxAir(1) This function
satisfies the following recurrence:

0 ifi>n
MaxAir(i + 1)

MaxAir(i) =
max Lengthli] + MaxAir(Next(i))

} otherwise

We can memoize this function into an a one-dimensional array MaxAir|[1 .. n + 1], which
we can fill from right to left.

MaxAIR(Ramp|l .. n],Length[l .. n]):
Ramp[n + 1] - oo
MaxAir[n + 1] + 0
fori <~ ndownto 1
next < BINARYSEARCH(Ramp, Rampli] 4+ Length]i])
MaxAir[i] < max{MaxAir[i + 1], Length[i] + MaxAir[next|}
return MaxAir[1]

Because of the binary search for Next(i) (here stored in the variable next), the algorithm
runs in O(n log n) time. n

'The north slope is faster, but too short for an interesting contest.

CS/ECE 374 B Lab 9 olutions Fall 2019

2. Uh-oh. The university lawyers heard about Lenny and Bill’s little bet and immediately
objected. To protect the university from either lawsuits or sky-rocketing insurance rates,
they impose an upper bound on the number of jumps that either sledder can take.

Describe and analyze an algorithm to determine the maximum total distance that Lenny
or Bill can spend in the air with at most k jumps, given the original arrays Ramp]1 .. n] and
Length[l..n] and the integer k as input.

Solution: Again, add a sentinel ramp Ramp[n + 1] = oo, and for any index i, let Next(7)
denote the smallest index j such that Ramp[j] > Rampli] + Length[i].

Now let MaxAir(i, ¢) denote the maximum distance any sledder can spend in the air,
starting on the ground at the ith ramp, using at most ¢ jumps. We need to compute
MaxAir(1, k). This function obeys the following recurrence:

0 ifi>norj=0
MaxAir(i + 1,¢)

MaxAir(i, {) =
1.
"\ Length[i] + MaxAir(Next(i), ¢ — 1)

} otherwise

We can memoize this function into a two-dimensional array MaxAir[l ..n + 1,0 .. k], which
we can fill by considering rows from bottom to top in the outer loop and filling each row in
arbitrary order in the inner loop.

MaxAIR(Ramp|l ..n],Length[l ..n]. k):

Ramp[n + 1] - oo
for{ < Otok

MaxAir[n + 1,4 < 0
for i <~ ndownto 1l

next < BINARYSEARCH(Ramp, Rampli] + Length][i])

for{ < 0Otok

MaxAirli, j] + max{MaxAir[i + 1, {], Length[i] + MaxAir[next, ¢ — 1]}

return MaxAir[1, k]

Because we perform the binary search for Next(i) outside the inner loop, the algorithm
runs in O(n logn + nk) time. [

CS/ECE 374 B Lab 9 olutions Fall 2019

3. To think about later: When the lawyers realized that imposing their restriction didn’t
immediately shut down the contest, they added a new restriction: No ramp can be used
more than once! Disgusted by the legal interference, Lenny and Bill give up on their bet
and decide to cooperate to put on a good show for the spectators.

Describe and analyze an algorithm to determine the maximum total distance that Lenny
and Bill can spend in the air, each taking at most k jumps (so at most 2k jumps total), and
with each ramp used at most once.

Solution: Again, add a sentinel ramp Ramp[n + 1] = oo, and for any index 4, let Next(i)
denote the smallest index j such that Ramp[j] > Rampli] + Length[i].

Let MaxAir2(i, j, ¢, m) denote the maximum time that Lenny and Bill can spend in the
air if Lenny starts at ramp ¢, Bill starts at ramp j, Bill did not jump from ramps ¢ through
j — 1 (so Lenny still can use any of those ramps), Lenny has £ jumps remaining, and Bill
has m jumps remaining. (Whew!) We develop a recurrence for this function as follows:

* The recurrence is based on Lenny’s decision whether or not to jump at ramp 1.

 If Bill and Lenny are at the same ramp ¢, and Lenny decides to jump, then Bill must
sled down to ramp ¢ + 1. Otherwise, Bill stays at ramp j.

» If Lenny ever sleds or jumps ahead of Bill (that is, if ¢ > j5), then (for purposes of
computation) Lenny and Bill swap identities. In particular, if Lenny and Bill ever find
themselves at the same ramp, then no matter what Lenny decides, Bill and Lenny will
swap. Thus, “Bill” always means the sledder further downhill, and “Lenny” always
means the sledder further uphill.

This function obeys the following recurrence:

MaxAir2(i, j, £,m)

MaxAir2(j,i,m,¥) ifi>j
—00 if¢ <O0orm<0
0 ifi >n
- max{ . MaxAit‘“z(i,'i + 1,m,€? } ifi=j<n
Length[i] + MaxAir2(i + 1, Next(i),m, ¢ — 1) -
max { Maxair2(i + 1, j, £, m) } otherwise
L Length[i] + MaxAir2(Next(7), j, £ — 1,m)

We can memoize this function into a four(!)-dimensional array Air[l1..n+1,1..n+ 1,
—1..k,—1..k]. Each entry Air[i, j,¢,m| with i < j depends only on entries Air[i’, j/,
¢, m'] where either i’ > i, or i/ = i and j' > i. Thus, we can fill the array by decreasing i
in the outermost loop, decreasing j in the next loop, and considering ¢ and m in arbitrary
order in the inner two loops. The resulting algorithm (on the next page) runs in O (n2k?)
time.

(This is by far the most complicated dynamic programming algorithm we will see all
semester!)

CS/ECE 374 B Lab 9 olutions Fall 2019

MaxA1r2(Ramp|[l .. n|. Length[1l .. n]. k):
Ramp[n + 1] - o0
Length[n 4+ 1] <~ 0
fori <~ n+1downtol
next <— BINARYSEARCH(Ramp, Rampli] + Length[i])
for j <~ n+1downto i
for{+ —1tok
form<+ —1tok

iff<0orm<0
Airli, j, £, m] + —o0
elseifi=n+landj=n+1
Air[i, j,£,m] + 0
elseifi = j

o Airliyi+1,m, /]
Airli, i, ¢, m] + max

Lengthli] + Air[i + 1, next,m, £ — 1]
else
Air[i, j, £, m] < max { élr[l + Lg b m] }
Lengthli] + Air[next, j, ¢ — 1,m)]
Air[j,i,m, l] < Air[i, j, ¢, m]
return Air[1, 1, k, k|

