
Part II

Course Goals and Overview
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High-Level Questions

1 Computation, formally.
1 Is there a formal definition of a computer?

2 Is there a “universal” computer?

2 Algorithms
1 What is an algorithm?

2 What is an e�cient algorithm?

3 Some fundamental algorithms for basic problems

4 Broadly applicable techniques in algorithm design

3 Limits of computation.
1 Are there tasks that our computers cannot do?

2 How do we prove lower bounds?

3 Some canonical hard problems.
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Course Structure

Course divided into three parts:
1 Basic automata theory: finite state machines, regular languages,

hint of context free languages/grammars, Turing Machines
2 Algorithms and algorithm design techniques
3 Undecidability and NP-Completeness, reductions to prove

intractability of problems
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Goals

1 Algorithmic thinking
2 Learn/remember some basic tricks, algorithms, problems, ideas
3 Understand/appreciate limits of computation (intractability)
4 Appreciate the importance of algorithms in computer science

and beyond (engineering, mathematics, natural sciences, social
sciences, ...)
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History

Muhammad ibn Musa al-Khwarizmi (c.780–c.850)
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Text on Algebra

Nikita Borisov (UIUC) CS/ECE 374 20 Fall 2019 20 / 33



Algorithm Description

If some one says: “You divide ten into two parts: multiply
the one by itself; it will be equal to the other taken eighty-one
times.” Computation: You say, ten less a thing, multiplied
by itself, is a hundred plus a square less twenty things, and
this is equal to eighty-one things. Separate the twenty things
from a hundred and a square, and add them to eighty-one.
It will then be a hundred plus a square, which is equal to a
hundred and one roots.

(10 � x)2 = 81x

x
2 � 20x + 100 = 81x

x
2 + 100 = 101x
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Models of Computation vs Computers

1 Model of Computation: an “idealized mathematical construct”
that describes the primitive instructions and other details

2 Computer: an actual “physical device” that implements a very
specific model of computation
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First Computer

Babbage’s analytical engine—designed in 1837, never built.
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First Program

Ada Lovelace’s “Note G” describing how to calculate Bernouilli
numbers using the analytical engine.
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First Bug!

Ada Lovelace’s “Note G” describing how to calculate Bernouilli
numbers using the analytical engine.
This version contains a bug!
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Models of Computation vs. Computers

Models and devices:
1 Algorithms: usually at a high level in a model
2 Device construction: usually at a low level
3 Intermediaries: compilers
4 How precise? Depends on the problem!
5 Physics helps implement a model of computer
6 Physics also inspires models of computation
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Adding Numbers

Problem Given two n-digit numbers x and y , compute their sum.

Basic addition
3141

+7798
10939
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Adding Numbers

c = 0
for i = 1 to n do

z = xi + yi

z = z + c
If (z > 10)

c = 1
z = z � 10 (equivalently the last digit of z)

Else c = 0
print z

End For
If (c == 1) print c

1 Primitive instruction is addition of two digits
2 Algorithm requires O(n) primitive instructions
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Multiplying Numbers

Problem Given two n-digit numbers x and y , compute their
product.

Grade School Multiplication
Compute “partial product” by multiplying each digit of y with x and
adding the partial products.

3141
⇥ 2718
25128
3141

21987
6282
8537238
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Time analysis of grade school multiplication

1 Each partial product: ⇥(n) time
2 Number of partial products:  n

3 Adding partial products: n additions each ⇥(n) (Why?)
4 Total time: ⇥(n2)
5 Is there a faster way?
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Fast Multiplication

Best known algorithm: O
�
n log n · 4log⇤ n

�
by Harvey and van der

Hoeven, published in 2018!
Conjecture: there exists an O(n log n) time algorithm

We don’t fully understand multiplication!
Computation and algorithm design is non-trivial!
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Aside about O-notation

Some previous versions of multiplication are still widely used:

Karatsuba algorithm O(nlog2 3) [1962]

Schönhage-Strassen (FFT) O(n log n log log n) [1971]

Why?

Fürer’s algorithm (2007) O(n2O(log⇤ n))
. . . beats Schönhage-Strassen for numbers greater than 2264 .
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