Part 1l

Course Goals and Overview

CS/ECE 374 Fall 2019 15/33

High-Level Questions

©@ Computation, formally.

@ Is there a formal definition of a computer?
@ s there a "universal” computer?
© Algorithms
©® What is an algorithm?
@ What is an efficient algorithm?
© Some fundamental algorithms for basic problems
@ Broadly applicable techniques in algorithm design

© Limits of computation.

@ Are there tasks that our computers cannot do?
® How do we prove lower bounds?
© Some canonical hard problems.

Nikita Borisov (UIUC) CS/ECE 374 Fall 2019 16 /33

Course Structure

Course divided into three parts:

@ Basic automata theory: finite state machines, regular languages,
hint of context free languages/grammars, Turing Machines

@ Algorithms and algorithm design techniques

© Undecidability and NP-Completeness, reductions to prove
intractability of problems

Nikita Borisov (UIUC) CS/ECE 374 Fall 2019 17 /33

Goals

o Algorithmic thinking
@ Learn/remember some basic tricks, algorithms, problems, ideas
@ Understand/appreciate limits of computation (intractability)

© Appreciate the importance of algorithms in computer science
and beyond (engineering, mathematics, natural sciences, social
sciences, ...)

Nikita Borisov (UIUC) CS/ECE 374 Fall 2019 18/33

History

Nikita Borisov (UIUC) /ECE 374 Fall 2019

History

Muhammad ibn Musa al-Khwarizmi (c.780—c.850)

Nikita Borisov (UIUC) CS/ECE 374 Fall 2019

Text on Algebra

Nikita Borisov

1) £ il N o ey e e
and gy L0 gy Wdor Visle oy D)t A8 205
A dde Uy e Jie ae b |.L\,,wt1=-h;_u
oy JU 0 T e gy B st

jye 2iny ind JU

Ja Lo uyte sy LY
T e gy gl e e L B8 et
sy 91 & gl sad Jhe 2ie gt g W oy

R R e
B 5 O el e A) e
sl g e 4 el 5 UL, I e
n s sty Jue J6 WG 0bae 0 3y AN ess
o e e o b ke it e Jam

By fo ke Tl e U i 3m gl

CS/ECE 374

the hrst quadrate, which is the squsre, and the two
quadrangles on its sides, which are the ten roots, make
together dhirty-nine. In order to complete the great
quadrate, there wants oly s square of five maltiplicd
by five, or twenty-five. This we add to thirty-nine, in
onder to complete the great square 5 H. ‘The sum is
sixty-four. We extract its root, eight, which isane of
the sides of the grest quadrangle- By subiracting from
this the sane quantity which we huve before added,
namely five, we obtain three as the remainder. This ix
the side of the qusdrangle A B, which represents the
square; it is thue coot of this square, and the square
itself s ninc. This is the figure j—

A

I

Desmonstration of the Case: a Square and tioesty-one
Dirheos are equal t ten Roots."s

We vopresent the square by a quadiate A D, the

Lengh of whase side we donot know. T chis we joina

paraliclogram, the breadth of which is equal 1o ane of

the sides of the quadeate A D, such as the side B N.

This paralellogram is H B. The length of the two

Algorithm Description

If some one says: “You divide ten into two parts: multiply
the one by itself; it will be equal to the other taken eighty-one
times.” Computation: You say, ten less a thing, multiplied
by itself, is a hundred plus a square less twenty things, and
this is equal to eighty-one things. Separate the twenty things
from a hundred and a square, and add them to eighty-one.
It will then be a hundred plus a square, which is equal to a
hundred and one roots.

Nikita Borisov (UIUC) CS/ECE 374 Fall 2019 21/33

Algorithm Description

If some one says: “You divide ten into two parts: multiply
the one by itself; it will be equal to the other taken eighty-one
times.” Computation: You say, ten less a thing, multiplied
by itself, is a hundred plus a square less twenty things, and
this is equal to eighty-one things. Separate the twenty things
from a hundred and a square, and add them to eighty-one.
It will then be a hundred plus a square, which is equal to a
hundred and one roots.

(10 — x)® = 81x
x? — 20x + 100 = 81x
x? 4100 = 101x

Nikita Borisov (UIUC) CS/ECE 374 21 Fall 2019 21/33

Models of Computation vs Computers

@ Model of Computation: an “idealized mathematical construct”
that describes the primitive instructions and other details

© Computer: an actual “physical device” that implements a very
specific model of computation

Nikita Borisov (UIUC) CS/ECE 374 Fall 2019 22/33

First Computer

O I
.
e —
———1
o m——
—
e ——
——
=
= |
1
e
e ——
=1
—
———
=
—
—

[
VVVVIINIRERRLPPPFFrAA9999) ’

|
|
|
|
|
\
|
'
i
'
'
H
'

i

Babbage's analytical engine—designed in 1837, never built.
Nikita Borisov (UIUC) CS/ECE 374 Fall 2019

RE : wona
I o o
Ada Lovelace's “Note G" describing how to calculate Bernouilli
numbers using the analytical engine.

Nikita Borisov (UIUC) CS/ECE 374 Fall 2019 24 /33

|
|
|
. ’ n

Ada Lovelace's “Note G" describing how to calculate Bernouilli
numbers using the analytical engine.
This version contains a bug!

Nikita Borisov (UIUC) CS/ECE 374 Fall 2019 25/33

Models of Computation vs. Computers

Models and devices:
© Algorithms: usually at a high level in a model
@ Device construction: usually at a low level
© Intermediaries: compilers
© How precise? Depends on the problem!
© Physics helps implement a model of computer

© Physics also inspires models of computation

Nikita Borisov (UIUC) CS/ECE 374 Fall 2019 26 /33

Adding Numbers

Problem Given two n-digit numbers x and y, compute their sum.

Basic addition

3141
+7798
10939

Nikita Borisov (UIUC) CS/ECE 374

Fall 2019 27/33

Adding Numbers

c=0
for i=1 to n do
zZ=xitYyi
z=2z+cC
If (z > 10)
c=1
z=z-10 (equivalently the last digit of z)
Else ¢ =10
print z
End For
If (¢ ==1) print ¢

Nikita Borisov (UIUC) CS/ECE 374 Fall 2019 28/33

Adding Numbers

c=0
for i=1 to n do
zZ=xitYyi
z=2z+cC
If (z > 10)
c=1
z=z-10 (equivalently the last digit of z)
Else ¢ =10
print z
End For
If (¢ ==1) print ¢

@ Primitive instruction is addition of two digits

@ Algorithm requires O(n) primitive instructions

Nikita Borisov (UIUC)

CS/ECE 374 Fall 2019 28/33

Multiplying Numbers

Problem Given two n-digit numbers x and y, compute their
product.

Grade School Multiplication

Compute “partial product” by multiplying each digit of y with x and
adding the partial products.

3141
X 2718

25128

3141
21987
6282
8537238

4

Nikita Borisov (UIUC) CS/ECE 374 29 Fall 2019 29/33

Time analysis of grade school multiplication

© Each partial product: ©(n) time

© Number of partial products: < n

@ Adding partial products: n additions each @(n) (Why?)
Q Total time: O(n?)

@ Is there a faster way?

Nikita Borisov (UIUC) CS/ECE 374 Fall 2019 30/33

Fast Multiplication

Best known algorithm: O (n log n - 4'°¢” ") by Harvey and van der
Hoeven, published in 2018!
Conjecture: there exists an O(nlog n) time algorithm

Nikita Borisov (UIUC) CS/ECE 374 Fall 2019 31/33

Fast Multiplication

Best known algorithm: O (n log n - 4'°¢” ") by Harvey and van der
Hoeven, published in 2018!
Conjecture: there exists an O(nlog n) time algorithm

We don’t fully understand multiplication!
Computation and algorithm design is non-trivial!

Nikita Borisov (UIUC) CS/ECE 374 Fall 2019 31/33

Aside about -notation

Some previous versions of multiplication are still widely used:
e Karatsuba algorithm O(n'°g23) [1962]
@ Schonhage-Strassen (FFT) O(nlog nloglog n) [1971]
Why?

Nikita Borisov (UIUC) CS/ECE 374 Fall 2019 32/33

Aside about -notation

Some previous versions of multiplication are still widely used:
e Karatsuba algorithm O(n'°g23) [1962]
@ Schonhage-Strassen (FFT) O(nlog nloglog n) [1971]
Why? Fiirer's algorithm (2007) O(n2©(loe™ n))

Nikita Borisov (UIUC) CS/ECE 374 Fall 2019 32/33

Aside about -notation

Some previous versions of multiplication are still widely used:
e Karatsuba algorithm O(n'°g23) [1962]
@ Schonhage-Strassen (FFT) O(nlog nloglog n) [1971]
Why? Fiirer's algorithm (2007) O(n2©(loe™ n))
... beats Schénhage-Strassen for numbers greater than 22,

Nikita Borisov (UIUC) CS/ECE 374 Fall 2019 32/33

