HW 1: EXtra prOblemS Instructors: Kani, Har-Peled, and Miller
CS/ECE 374: Algorithms & Models of Computation, Fall 2020 Version: 1.0

Each homework assignment will include at least one solved problem, similar to the problems
assigned in that homework, together with the grading rubric we would apply #f this problem
appeared on a homework or exam. These model solutions illustrate our recommendations
for structure, presentation, and level of detail in your homework solutions. Of course, the
actual content of your solutions won’t match the model solutions, because your problems are
different!

Solved Problems

1 Recall that the reversal w? of a string w is defined recursively as follows:

€ fw=c¢€
wR:—{
R

xvea fw=a-x
A palindrome is any string that is equal to its reversal, like AM ANAPLANACANALPANAMA,
RACECAR, POOP, I, and the empty string.

1. Give a recursive definition of a palindrome over the alphabet .

2. Prove w = w® for every palindrome w (according to your recursive definition).

R

3. Prove that every string w such that w = w™ is a palindrome (according to your recursive

definition).

R

In parts (b) and (c), you may assume without proof that (z-y) = y® « 2% and (27)% = z for all

strings x and y.

Solution:

1. A string w € ¥* is a palindrome if and only if either
e wW=g¢,0r
e w = a for some symbol a € ¥, or
e w = axa for some symbol a € ¥ and some palindrome x € ¥*.
Rubric: 2 points = 1/2 for each base case + 1 for the recursive case. No credit for the rest
of the problem unless this is correct.

2. Let w be an arbitrary palindrome.
Assume that 2 = 2 for every palindrome x such that ’x‘ < }w‘

There are three cases to consider (mirroring the three cases in the definition):
R — ¢ by definition, so w = w’.
R

e Ifw=c¢€, then w

o If w = a for some symbol a € ¥, then w R

= a by definition, so w = w™.

e Suppose w = azxa for some symbol a € ¥ and some palindrome x € P. Then

wh = (a-x o a)f
=(rea)fea by definition of reversal
=at ezl eq You said we could assume this.
=aezfeq by definition of reversal
=aexeaqa by the inductive hypothesis
=w by assumption

In all three cases, we conclude that w = w’.

Rubric: 4 points: standard induction rubric (scaled)

3. Let w be an arbitrary string such that w = w?.

R

Assume that every string = such that ’x‘ < |w‘ and x = x'* is a palindrome.

There are three cases to consider (mirroring the definition of “palindrome”):

o If w=¢€, then w is a palindrome by definition.
o If w = a for some symbol a € ¥, then w is a palindrome by definition.
o Otherwise, we have w = ax for some symbol a and some non-empty string x.
The definition of reversal implies that w?® = (ax)" = 2.
Because x is non-empty, its reversal z® is also non-empty.
Thus, 2% = by for some symbol b and some string y.
It follows that w!* = bya, and therefore w = (w?)% = (bya)? = ay®.

[At this point, we need to prove that a = b and that y is a palindrome./

Our assumption that w = w® implies that bya = ay®b.
The recursive definition of string equality immediately implies a = b.

Because a = b, we have w = ay®a and w = aya.

The recursive definition of string equality implies y%a = ya.
It immediately follows that (y®a)® = (ya).
Known properties of reversal imply (y%a)® = a(y
It follows that ay® = ay, and therefore y = y*.
The inductive hypothesis now implies that y is a palindrome.

R

BB = qy and (ya)f = ay®.

We conclude that w is a palindrome by definition.
In all three cases, we conclude that w is a palindrome.

Rubric: 4 points: standard induction rubric (scaled).

« No penalty for jumping from aya = ayfa directly to y = y=.

Rubric:[induction]| For problems worth 10 points:

+ 1 for explicitly considering an arbitrary object
+ 2 for a valid strong induction hypothesis
— Deadly Sin! Automatic zero for stating a weak induction hypothesis, unless the rest of
the proof is perfect.
+ 2 for explicit exhaustive case analysis

2

3

— No credit here if the case analysis omits an infinite number of objects. (For example: all
odd-length palindromes.)
— —1 if the case analysis omits an finite number of objects. (For example: the empty
string.)
— —1 for making the reader infer the case conditions. Spell them out!
— No penalty if cases overlap (for example:
+ 1 for cases that do not invoke the inductive hypothesis (“base cases”)
— No credit here if one or more “base cases” are missing.
+ 2 for correctly applying the stated inductive hypothesis
— No credit here for applying a different inductive hypothesis, even if that different induc-
tive hypothesis would be valid.
+ 2 for other details in cases that invoke the inductive hypothesis (“inductive cases”)
— No credit here if one or more “inductive cases” are missing.

(100 pTS.) Repeat that.

2.A. Let x1,...,2, be a sequence of integer numbers, such that o < x; < 3, for all i, where «, 5
are some integer numbers. Prove that there are at least [n/(5 — « + 1)] numbers in this
sequence that are all equal.

2.B. Let G = (V,E) be an undirected graph. Unless we say otherwise, a graph has no loops or
parallel edges. Prove, using (A), that if |V| > 2 there are two distinct nodes u and v such
that degree of u is equal to degree of v. Recall that the degree of a node x is the number of
edges incident to x.

2.C. Prove that if all vertices in G are of degree at least one, then there is a (simple) path between
two distinct nodes u and v such that degree of u is equal to degree of v.

(100 pTS.) Mix this.
The sort, w*, of a string w € {0,1}" is obtained from w by sorting its characters. For example,
010101° = 000111. The sort function is formally defined as follows:
€ ifw=c¢e
w® =< 0z® if w=0zx

z%1 ifw=1zx

The merge function, evaluated in order from top to bottom, is

Y ifr=c¢

x ify=c¢
m(z,y) = ¢ Om(a’,y) if x =02’
om(z,y") ify=0y
| Im(a',y) ifz =12

For example, we have m(10,10) = 1010, m(10,010) = 01010, and m(010,0001100) = 0000101100.

For a string = € {0,1}*, let #0(x) and #,(y) be the number of 0s and 1s in z, respectively. For
example, #,(0101010) = 4 and #,(0101010) = 3.

3

4

3.A. (Not for submission.) Prove by induction that for any string w € {0,1}* we have that

w® € 0*1%.

3.B. Prove by induction that for any string w € {0, 1}* we have that #,(w) = #¢(w®). Conclude

that #1(w) = #1(w*) and |w| = |w*

, for any string w.

3.C. Prove by induction that for any two strings x,y € {0, 1}* we have that

#o(m(z,y)) = #o(x) + #o(y)-

(Hint: Do induction on |z + |y|.)

Conclude that #;(m(z,y)) = #1(x) + #1(y). and ‘m(x,y)} = |$‘ + |y|

[This part is somewhat tedious if you write carefully all the details out explicitly. Avoid
repetition by stating that you are (essentially) repeating an argument that was already seen
in the proof.]

3.D. Prove by induction that for any two strings z,y of the form 0*1*, we have that m(z,y) is of

the form 0*1*.

3.E. Prove (using the above) that (z ¢ y)® = m(z*,y*) for all strings z,y € {0,1}".

(100 pTs.) OLD Homework problem (not for submission):

Walk on the grid.

Let po = (20, ¥0) be a point on the positive integer grid (i.e., xg, yo are positive integer numbers).
A point (z,y) is good if xt =y or x =0 or y = 0. For a point p = (x,y) its successor is defined
to be

) (x,y—xz—1) y>u (vertical move)
« =
P (x—y—1ly) x>y (horizontal move).

Consider the following sequence W (pg) = po, p1, - - - computed for py. In the ith stage of computing
the sequence, if p;_1 is good then the sequence is done as we arrived to a good location. Otherwise,

we set p; = a(p;—1).

4.A. Prove, by induction, that starting with any point p on the positive integer grid, the sequence

W (p) is finite (i.e., the algorithm performs a finite number of steps before stopping).

4.B. (Harder.) Given such a sequence, every step between two consecutive points is either a

vertical or a horizontal move. A run is a maximal sequence of steps in the walk that are the
same (all vertical or all horizontal). Prove that starting with a point p = (x,y) there are at
most O(log x + logy) runs in the sequence W (p).

