HW 5 Due on Wednesday, October 7, 2020 at 10am CST

CS/ECE 374: Algorithms & Models of Computation, Fall 2020 Version: 1.4

Submission instructions as in previous homeworks.

13 (100 prs.) That's so Hanoi-ing.

Consider the following variants of the Towers of Hanoi. For each of variant, describe an algorithm
to solve it in as few moves as possible. Prove that your algorithm is correct. Initially, all the n
disks are on peg 1, and you need to move the disks to peg 2. In all the following variants, you are
not allowed to put a bigger disk on top of a smaller disk.

13.A. (30 pTs.) Hanoi 0: Suppose you are forbidden to move any disk directly between peg 1 and
peg 2, and every move must involve (the third peg) 0. Exactly (i.e., not asymptotically) how
many moves does your algorithm make as a function of n?

13.B. (30 pTs.) Hanoi 2: Suppose you are only allowed to move disks from peg 0 to peg 1, from
peg 1 to peg 2, or from peg 2 to peg 0.
Provide an upper bound, as tight as possible, on the number of moves that your algorithm
uses.
(One can derive the exact upper bound by solving the recurrence, but this is too tedious and
not required here.)

13.C. (40 pts.) Hanoi Bye Bye: Finally consider the disappearing Tower of Hanoi puzzle where the
largest remaining disk will disappear if there is nothing on top of it. The goal here is to get
all the disks to disappear and be left with three empty pegs (in as few moves as possible).

Provide an upper bound, as tight as possible, on the number of moves your algorithm uses.

14 (100 prs.) Divide and Merger

Suppose you are given k sorted arrays Ay, As, ..., Ay (potentially of different sizes). Let n; > 0 be
the size of the ith array A;, fori=1,...,k, with Zle n; = n. Assume that all the numbers in all
the arrays are distinct. You would like to merge them into a single sorted array A of n elements.

14.A. (30 p1s.) Use a divide and conquer strategy to derive an algorithm that sorts the given
sorted arrays in O(nlogk) time, into one big happy sorted array.

14.B. (30 pt1s.) In MergeSort we split the array of size N into two arrays each of size N/2,
recursively sort them and merge the two sorted arrays. Suppose we instead split the array of
size N into k arrays of size N/k each and use the merging algorithm in the preceding step to
combine them into a sorted array. Describe the algorithm formally and analyze its running
time via a recurrence. You do not need to prove the correctness of the recursive algorithm.

14.C. (40 pts.) Describe an algorithm (not necessarily divide and conquer) for the settings of
(14.A.) that works in O(n + Zle n;log ™) time. Prove the correctness of your algorithm,
Note that this is potentially an improved aigorithm if the n;s are non-uniform. For example,
if n; =n/2' fori=1,..., k, then the overall running time is linear. One can verify (but you
do not need to do it — it is not immediate) that O(3F_, n; log ) = O(nlogk). This implies
that this algorithm is a strict improvement over (14.A..). Z


https://courses.engr.illinois.edu/cs374/fa2020/hw/hw_01.pdf

15

(100 pTs.) Fowl business.

You were given a kettle of n birds, which look all the same to you. To decide if two birds are
of the same species, you perform the following experiment — you put the two of them in a cage
together. If they are friendly to each other, then they are of the same species. Otherwise, you
separate them quickly before survival of the fittest kicks in.

15.A. (60 pTSs.) Suppose that strictly more than half of the birds belong to the same species.
Describe and analyze an efficient algorithm that identifies every bird among the n birds that
belong to this dominant species.

15.B. (40 pTs.) Now suppose that there are exactly p species present in your kettle of n birds.
and one species has a plurality: more birds belong to that species than to any other species.
Present a procedure to pick out the birds from the plurality species as efficiently as possible
(i.e., minimize the number of experiments you have to do as a function of n and p). Do not
assume that p = O(1).



