
HW 10 Due on Wednesday, November 18, 2020 at 10am CST

CS/ECE 374: Algorithms & Models of Computation, Fall 2020 Version: 1.14

Submission instructions as in previous homeworks.

28 (100 pts.) Skip distance.

Let G = (JnK ,E) be a connected undirected graph with positive distinct costs on its edges (the
costs are real numbers), with n vertices and m edges, where JnK = {1, 2, . . . , n}. You can assume
here that n ≤ m. Here, the cost of an edge e ∈ E is denoted by c(e).

28.A. (30 pts.) Given a set X ⊆ E, Let C1, . . . , Ck be the connected components of the graph
J = (JnK , X). Consider the reduced graph G/X = (JkK ,E′), where there is an edge i′j′ ∈ E′,
if and only if there exists an edge ij ∈ E, such that i ∈ V(Ci′) and j ∈ V(Cj′). If i′j′ ∈ E′,
then

c(i′j′) = min
ij∈E:i∈V(Ci′),j∈V(Cj′)

c(ij).

Describe in detail an algorithm, as fast as possible, that computes the reduced graph G/X.
You might need to use radix sort here1. A solution using hashing is worth no points at all.

28.B. (20 pts.) The skip price of a path π in G is s(π) = maxe∈π c(e). The skip distance for two
vertices i, j ∈ V(G), is

s(i, j) = min
π:path connecting i to j in G

s(π).

Given two vertices u, v ∈ JnK, and a real number α, describe an algorithm, as fast as possible,
that decides if s(u, v) > α.

28.C. (50 pts.) For a number β, let

E≤β = {e ∈ E | c(e) ≤ β} ,

be the set of edges in G with cost at most β.
A natural algorithm for computing the skip distance between u and v is to pick some value
α, and decide if s(u, v) > α, and if so, the algorithm recurses on computing the skip distance
between u′ and v′ in G′ = G/E≤α, where u′ and v′ are the two meta vertices of G′ that their
original connected components contains u and v, respectively. Otherwise, if s(u, v) ≤ α, the
algorithm computes the skip distance between u and v in the graph (JnK ,E≤α). If the graph
has constant size, the algorithm computes the skip distance directly using brute force.
First prove that this algorithm is correct. Next, describe how to implement this algorithm
efficiently, so that the resulting algorithm is as fast as possible (in particular, what is the
right value of α to pick, and how do you compute it?). What is the running time of your
algorithm as a function of n and m?

29 (100 pts.) More on MST.

1Recall that radix sort allows you to sort n integer numbers that are in the range 1, . . . , nO(1) in O(n) time (if you do
not know what radix sort is, read the wikipedia page).

1

https://courses.engr.illinois.edu/cs374/fa2020/hw/hw_01.pdf

29.A. (40 pts.) The spanning graph that survives.
Let G = (V,E) be a connected graph on n vertices and m edges, with unique costs on the
edges. A subgraph H of G is a MST survivor , if for any edge e ∈ E, we have that G − e
and H − e have the same minimum spanning forest, where G − e denotes the graph G after
we delete the edge e from it. Present an algorithm, as fast as possible, that computes a MST
survivor of G that has a minimum number of edges among all such graphs. How fast is your
algorithm? Prove that your algorithm is correct.

29.B. (40 pts.) Linear time MST.
Some Nigerian prince, that needs your help, sent you as a gift a black box B and a graph G.
The graph G has n vertices and m edges, and real positive distinct weights on its edges. The
black box can computes the MSF (minimum spanning forest) of any graph with n′ vertices,
and at most (3/2)n′ edges, in O(n′) time (it will compute the minimum spanning forest of
this graph if it is not connected). You can use the box B only on a graph with n′ vertices,
such that n′ ≤ n.
Present an algorithm that computes the MST of G, in O(m) time, using this black box (you
can safely assume that m ≥ n). Prove the correctness of your algorithm.

29.C. (20 pts.) Assume you are given a union-find data-structure that can perform an operation
in O(1) time. Given a graph G with n vertices and m edges, where the weights on the edges
are positive integers that are all O(n5), describe an algorithm, as fast possible, for computing
the MST of G. What is the running time of your algorithm?

30 (100 pts.) Not on MST.

You are given a directed graph G = (V,E) with 2n vertices, and m edges. Here, the vertices
appear in pairs (i.e., twins) xi, yi, for i = 1, . . . , n. For a vertex u in this graph, let twin(u) be the
other vertex in the pair of u (thus, if u = xi, then twin(u) = yi).

There are no edges between twins in this graph. If an edge u → v appears in the graph, so
does the edge twin(v) → twin(u). A subset of vertices S ⊆ V(G) is closed if x ∈ S, then all the
vertices reachable from x in G are in S. A closed set is bad if it includes two vertices that are
twins. A set of vertices S ⊆ V(G) is perfect if it is closed, |S| = n, and it includes exactly one
vertex from each pair (i.e., it is not bad).

Describe a greedy algorithm, as fast as possible, that decides if there is a perfect set in the
graph, and if so computes it. What is the running time of your algorithm? Prove the correctness
of your algorithm.

(Hint: Compute the strong connected components of G, and analyze the meta graph of strong
connected components of this graph. Add vertices to the output set using the meta graph, in a
greedy fashion.)

2

