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1 A Hamiltonian cycle in a graph G is a cycle that goes through every vertex of G exactly once. Deciding
whether an arbitrary graph contains a Hamiltonian cycle is NP-HARD.

A tonian cycle in a graph G is a cycle that goes through at least half of the vertices of G. Prove that
deciding whether a graph contains a tonian cycle is NP-HARD.

Solution:

[duplicate the graph] I will describe a polynomial-time reduction from HamiltonianCycle. Let G be an
arbitrary graph (which is the given instance of HamiltonianCycle). Let H be a graph consisting of two
disjoint copies of GG, with no edges between them; call these copies G; and Gs. I claim that G has a
Hamiltonian cycle if and only if H has a tonian cycle.

= Suppose G has a Hamilton cycle C. Let Cy be the corresponding cycle in G1. C; contains exactly
half of the vertices of H, and thus is a Hamiltonian cycle in H.

<= On the other hand, suppose H has a tonian cycle C'. Because there are no edges between the
subgraphs G1 and G, this cycle must lie entirely within one of these two subgraphs. G; and Go
each contain exactly half the vertices of H, so C must also contain exactly half the vertices of H,
and thus is a Hamiltonian cycle in either G or Go. But G and G4 are just copies of G. We
conclude that G has a Hamiltonian cycle.

Given G, we can construct H in polynomial time by brute force.

Solution:

[add n new vertices] WE describe a polynomial-time reduction from HamiltonianCycle. Let G be an
arbitrary graph, and suppose G has n vertices. Let H be a graph obtained by adding n new vertices to
G, but no additional edges. The claim is that G has a Hamiltonian cycle <=- H has a tonian cycle.

—> Suppose G has a Hamiltonian cycle C. Then C visits exactly half the vertices of H, and thus is
a tonian cycle in H.

<= On the other hand, suppose H has a tonian cycle C'. This cycle cannot visit any of the new
vertices, so it must lie entirely within the subgraph G. Since G contains exactly half the vertices
of H, the cycle C must visit every vertex of GG, and thus is a Hamiltonian cycle in G.

Given GG, we can construct H in polynomial time by brute force.

2 Big Clique is the following decision problem: given a graph G' = (V, E), does G have a clique of size at
least n/2 where n = |V is the number of nodes? Prove that Big Clique is NP-hard.

Solution:

Recall that an instance of CLIQUE consists of a graph G = (V, E) and integer k. (G,k) is a YES
instance if G has a clique of size at least k, otherwise it is a NO instance. For simplicity we will assume
n is an even number.

We describe a polynomial-time reduction from CLIQUE to BiG CLIQUE. We consider two cases depend-
ing on whether £ < n/2 or not. If k¥ < n/2 we obtain a graph G’ = (V’, E’) as follows. We add a set




of X new vertices where | X| = n — 2k; thus V/ = V & X. We make X a clique by adding all possible
edges between vertices of X. In addition we connect each vertex v € X to each vertex u € V. In other
words E' = EU{(u,v) | u € Vv € X}U{(a,b) | a,b € X}. If k > n/2 we let G = (V' E’) where
V' =V WX and E' = E, where | X| = 2k — n. In other words we add 2k — n new vertices which are
isolated and have no edges incident on them.

We make the following relatively easy claims that we leave as exercises.

Claim 0.1. Suppose k < n/2. Then for any clique S in G, SU X is a clique in G'. For any clique
S’ € G the set S"\ X is a clique in G.

Claim 0.2. Suppose k >n/2. Then S is a cliqgue in G' iff SN X =0 and S is a clique in G.

Now we prove the correctness of the reduction. We need to show that G has a clique of size k if and
only if G’ has a clique of size n'/2 where n’ is the number of nodes in G'.

— Suppose G has a clique S of size k. We consider two cases. If k > n/2 then n’ = n+ 2k —n = 2k;
note that S is a clique in G’ as well and hence S is a big clique in G’ since |S| = k > n//2. If
k < mn/2, by the first claim, SU X is a clique in G’ of size k+ | X| = k+n — 2k = n — k. Moreover,
n’ = n+n—2k = 2n — 2k and hence S U X is a big clique in G’. Thus, in both cases G’ has a big
clique.

<= Suppose G’ has a clique of size at least n//2 in G’. Let it be S’; [S’| > n'/2. We consider two
cases again. If k < n/2, we have n’ = 2n — 2k and |S’| > n — k. By the first claim, S = 5"\ X is
a clique in G. |S| > |5 = |X| > n—k— (n—2k) > k. Hence G has a clique of size k. If k > n/2,
by the second claim S’ is a clique in G and |S’| > n'/2 = (n 4+ 2k — n)/2 = k. Therefore, in this
case as well G has a clique of size k.

3  Recall the following kCOLOR problem: Given an undirected graph G, can its vertices be colored with k
colors, so that every edge touches vertices with two different colors?

3.A. Describe a direct polynomial-time reduction from 3COLOR to 4COLOR.

Solution:
Suppose we are given an arbitrary graph G. Let H be the graph obtained from G by adding a
new vertex a (called an apex) with edges to every vertex of G. I claim that G is 3-colorable if and
only if H is 4-colorable.

= Suppose G is 3-colorable. Fix an arbitrary 3-coloring of G, and call the colors “red”, “green”,
and “blue”. Assign the new apex a the color “plaid”. Let uv be an arbitrary edge in H.
— If both u and v are vertices in G, they have different colors.

— Otherwise, one endpoint of uv is plaid and the other is not, so v and v have different
colors.
We conclude that we have a valid 4-coloring of H, so H is 4-colorable.
<= Suppose H is 4-colorable. Fix an arbitrary 4-coloring; call the apex’s color “plaid” and the
other three colors “red”, “green”, and “blue”. Each edge uv in G is also an edge of H and
therefore has endpoints of two different colors. Each vertex v in G is adjacent to the apex and

therefore cannot be plaid. We conclude that by deleting the apex, we obtain a valid 3-coloring
of GG, so G is 3-colorable.

We can easily transform G into H in polynomial time by brute force.



3.B. Prove that kCOLOR problem is NP-hard for any k£ > 3.

Solution:
[direct] The lecture notes include a proof that 3COLOR is NP-hard. For any integer k£ > 3, I will
describe a direct polynomial-time reduction from 3COLOR to kCOLOR.
Let G be an arbitrary graph. Let H be the graph obtain from G by adding k& — 3 new vertices
ai,asz,...,a,_s, each with edges to every other vertex in H (including the other a;’s). I claim that
G is 3-colorable if and only if H is k-colorable.

= Suppose G is 3-colorable. Fix an arbitrary 3-coloring of G. Color the new vertices
ai,as,...,ap_3 with k — 3 new distinct colors. Every edge in H is either an edge in G
or uses at least one new vertex a;; in either case, the endpoints of the edge have different
colors. We conclude that H is k-colorable.

<= Suppose H is k-colorable. Each vertex a; is adjacent to every other vertex in H, and therefore
is the only vertex of its color. Thus, the vertices of G use only three distinct colors. Every
edge of GG is also an edge of H, so its endpoints have different colors. We conclude that the
induced coloring of G is a proper 3-coloring, so G is 3-colorable.

Given G, we can construct H in polynomial time by brute force.

Solution:
[induction] Let k be an arbitrary integer with k& > 3. Assume that jCOLOR is NP-hard for any
integer 3 < j < k. There are two cases to consider.
o If k=3, then kCOLOR is NP-hard by the reduction from 3SAT in the lecture notes.

o Suppose k = 3. The reduction in part (a) directly generalizes to a polynomial-time reduction
from (k—1)COLOR to kCOLOR: To decide whether an arbitrary graph G is (k — 1)-colorable,
add an apex and ask whether the resulting graph is k-colorable. The induction hypothesis
implies that (k — 1)COLOR is NP-hard, so the reduction implies that kCOLOR is NP-hard.

In both cases, we conclude that kCOLOR is NP-hard.

To think about later:

4

Let G be an undirected graph with weighted edges. A Hamiltonian cycle in G is heawvy if the total weight
of edges in the cycle is at least half of the total weight of all edges in GG. Prove that deciding whether a
graph contains a heavy Hamiltonian cycle is NP-hard.

Solution:
[two new vertices] I will describe a polynomial-time a reduction from the Hamiltonian path problem.
Let G be an arbitrary undirected graph (without edge weights). Let H be the edge-weighted graph
obtained from G as follows:
e Add two new vertices s and t.
o Add edges from s and t to all the other vertices (including each other).
e Assign weight 1 to the edge st and weight 0 to every other edge.
The total weight of all edges in H is 1. Thus, a Hamiltonian cycle in H is heavy if and only if it

contains the edge st. I claim that H contains a heavy Hamiltonian cycle if and only if G contains a
Hamiltonian path.



= First, suppose G has a Hamiltonian path from vertex u to vertex v. By adding the edges vs, st,
and tu to this path, we obtain a Hamiltonian cycle in H. Moreover, this Hamiltonian cycle is
heavy, because it contains the edge st.

<= On the other hand, suppose H has a heavy Hamiltonian cycle. This cycle must contain the edge
st, and therefore must visit all the other vertices in H contiguously. Thus, deleting vertices s and
t and their incident edges from the cycle leaves a Hamiltonian path in G.

Given GG, we can easily construct H in polynomial time by brute force.

Solution:

[smartass| I will describe a polynomial-time a reduction from the standard Hamiltonian cycle problem.
Let G be an arbitrary graph (without edge weights). Let H be the edge-weighted graph obtained from
G by assigning each edge weight 0. I claim that H contains a heavy Hamiltonian cycle if and only if G
contains a Hamiltonian path.

= Suppose G has a Hamiltonian cycle C'. The total weight of C' is at least half the total weight of
all edges in H, because 0 > 0/2. So C' is a heavy Hamiltonian cycle in H.

<= Suppose H has a heavy Hamiltonian cycle C'. By definition, C' is also a Hamiltonian cycle in G.

Given G, we can easily construct H in polynomial time by brute force.



