CS/ECE 374fa20 :
Prerecorded lectures
The prerecorded lectures are available on class-transcribe:
here. They are also available on youtube. If you have
problems accessing the videos, let us know.
- Strings, countable sets, languages, overview of
what is coming up
[slides]
- 1.1. Strings
[slides,
ct,
youtube].
- 1.1.1. Strings exercise
[slides,
ct,
youtube].
- 1.2. Countable sets:
[slides,
ct,
youtube].
- 1.3. Inductive proofs over strings:
[slides,
ct,
youtube].
- 1.4. Languages:
[slides,
ct,
youtube].
- 1.5. Overview [slides,
ct,
youtube].
-
Regular languages
[slides]
-
Deterministic finite automatas
[slides]
-
Non-deterministic finite automatas
[slides]
-
Lecture 5: Equivalence on NFAs, DFAs and regular expressions
[slides]
- 5.1. Equivalence of NFAs and DFAs
[slides,
youtube].
- 5.1.2. Algorithm for converting an NFA to DFA
[slides,
youtube].
- 5.1.3. Proof of correctness of conversion from NFA to
DFA
[slides, youtube].
- 5.2. Closure properties of regular languages:
PREFIX/SUFFIX
[slides, youtube].
- 5.3. Converting an NFA into a regular expression [slides, youtube].
-
Lecture 6: How to prove that languages are not regular, and
minimal automatas
[slides]
- 6.1. Not all languages are regular.
[slides, youtube].
- 6.2. When are states of a DFA equivalent?
[slides, youtube].
- 6.3. Fooling sets: Proving non-regularity
[slides, youtube].
- 6.3.1. Exponential gap in number of states between
NFA/DFA
[slides, youtube].
- 6.4. Using closure properties to prove that a
language is not regular.
[slides, youtube].
- 6.5. Minimal automata of a regular language
(Myhill-Nerode theorem)
[slides, youtube].
- 6.5.2. Proving and stating the Myhill-Nerode theorem
[slides, youtube].
-
Lecture 7: Context free languages
[slides]
- 7.1. A fluffy
introduction to context-free languages (CFL)
[slides,
youtube].
- 7.2. Formal definition of context-free grammars (CFG)
[slides, youtube].
- 7.3. (Optional) Converting regular languages into CFL
[slides, youtube].
-
7.4. Some properties of CFLs
- 7.5. Proving a CFG generates a specific language
[slides,
youtube].
- 7.6. CFGs normal form
[slides,
youtube].
- 7.7. PDA: Pushdown automatas
[slides, youtube].
- 7.8. Supplemental: Why an bn
cn is not CFL?
[slides, youtube].
-
Lecture 8: Turing machines
[slides]
-
Lecture 9: The halting theorem
[slides]
- 9.1. Cantor's diagonalization argument
[slides, youtube].
- 9.2. Introduction to the halting theorem
[slides, youtube].
- 9.3. The halting theorem (statement+proof)
[slides, youtube].
- 9.4. TM-Unrecognizable
[slides, youtube].
- 9.5. Turing complete (or what else is equivalent to a
real computer?)
[slides, youtube].
Extra: An example of proving undecidability of a language
[youtube].
-
Lecture 10: Reductions, Recursion, and Divide and Conquer
[slides,
youtube,
classtranscribe].
-
10.1. Brief introduction to the RAM model
[slides, youtube].
- 10.2. What is a good algorithm, and why use
asymptotic running time?
[slides, youtube].
-
10.3. Reductions
[slides,
youtube]
- 10.4. Recursion and self reductions
[slides, youtube].
- 10.5. Divide and Conquer
[slides, youtube].
-
10.6. Merge sort
[slides,
youtube].
- 10.6.1. Proving that merge, in merge-sort, is
correct
[slides, youtube].
- 10.6.2. Proof that merge-sort is correct [slides, youtube].
- 10.6.3. Running time analysis of merge-sort:
Recursion tree method
[slides, youtube].
- 10.7. QuickSort
[slides, youtube].
- 10.8. Binary search
[slides, youtube].
- 10.9. Solving recurrences - some examples
[slides, youtube]
- 10.10. Supplemental: Divide and conquer algorithm for
closest pair
[slides, youtube]
-
Lecture 11: Divide and conquer: Kartsuba’s Algorithm and
Linear Time Selection
[slides]
- 11.1. A slow algorithm for multiplying numbers
[slides,
youtube].
- 11.2. Multiplying numbers using divide and conquer
[slides,
youtube].
- 11.3. Faster multiplication of numbers - Karatsuba's algorithm
[slides,
youtube].
- 11.3.1. Solving the recurrences for Karatsuba's algorithm
[slides,
youtube].
-
11.4. Selection in linear time
- 11.4.1. Selecting in unsorted lists: Problem
definition and basic algorithms
slides
[youtube].
- 11.4.2. Quick select
[slides,
youtube].
- 11.4.3. Median of medians
[slides,
youtube].
- 11.4.4. Median of medians is a good median
[slides,
youtube].
- 11.4.5. Running time analysis of the median of
medians algorithm
[slides,
youtube].
- 11.4.6. Epilogue: On median selection in linear time
[slides,
youtube].
-
Lecture 12: More on recursive algorithms (backtracking,
and search trees).
[slides]
- 12.1. On the various flavors of recursive algorithms
[slides,
youtube].
- 12.2. Recursive search trees and backtracking (as
demonstrated on the 8 queen problem)
[slides,
youtube].
- 12.3. Brute force search, recursion and backtracking
- 12.3.1. A naive algorithm for max independent set in a graph
[slides,
youtube].
- 12.3.2. A recursive algorithm for maximum
independent set in a graph
[slides,
youtube].
- 12.4. Computing the longest increasing subsequence
(really slowly)
[slides,
youtube].
- 12.4.1. Analyzing RT of recursive algorithm for longest
increasing subsequence
[slides,
youtube].
-
Lecture 13: Introduction to dynamic programming
[slides
:
youtube
:
ct]
-
13.1. Recursion and memoization
- 13.2. Dynamic programming
[slides :
youtube].
- 13.3. Checking if a string is in $L^*$
[slides :
youtube].
- 13.4. Longest increasing subsequence revisited
[slides :
youtube].
- 13.5. How to come up with dynamic programming algorithms
[slides :
youtube].
- 13.6. Supplemental: Some experiments with memoization
[slides :
youtube].
- 13.7. Tangential: Fibonacci and his numbers
[slides :
youtube].
- 13.1.2 Answers to questions
[slides :
youtube].
-
Lecture 14: More dynamic programming
[slides
:
youtube
:
ct]
-
14.1. Review of dynamic programming, and some exercises
[slides
: youtube].
- 14.2. Edit Distance and Sequence Alignment
- 14.2.1. Edit distance: Problem definition and background
[slides
: youtube].
- 14.2.2. More on edit distance as alignment
[slides
: youtube].
- 14.2.3. The algorithm for edit distance
[slides
: youtube].
- 14.2.4. Dynamic programming algorithm for
edit-distance
[slides
: youtube].
- 14.2.5. Reducing the space used by edit-distance
[slides
: youtube].
- 14.2.6. Longest common subsequence problem
[slides
: youtube].
- 14.3. Maximum weighted independent set in a tree
[slides
: youtube].
- 14.4. Dynamic programming and DAGs
[slides
: youtube].
- 14.5. Supplemental: Context free grammars: The CYK
Algorithm
- 14.5.1. CYK: Problem statement, basic idea, and an example
[slides :
youtube].
- 14.5.2. Formal description of the CYK algorithm
[slides :
youtube].
-
Lecture 15: Graphs and graph search (BFS/DFS/SCC)
[slides :
youtube
:
ct].
- Lecture 16: DAGs, DFS, topological sorting, linear time
algorithm for SCC
[slides :
youtube
:
ct].
- 16.1. Overview: Depth First Search and SCC
[slides :
youtube].
- 16.2. Directed Acyclic Graphs
- 16.2.1. DAGs definition and basic properties
[slides :
youtube].
- 16.2.2. Topological ordering
[slides :
youtube].
- 16.2.2.1. Explicit definition of what topological ordering/sorting is
[slides :
youtube].
- 16.3. DFS
- 16.4. DFS in Directed Graphs
- 16.5. The meta graph of strong connected components
[slides :
youtube].
- 16.6. Linear time algorithm for finding all
strong connected components of a
directed graph
- 16.6.1. Wishful thinking linear-time SCC algorithm
[slides :
youtube].
- 16.6.2. Maximum post numbering and the source of the
meta-graph
[slides :
youtube].
- 16.6.3. The linear-time SCC algorithm (finally)
[slides :
youtube].
- 16.7. An Application of directed graphs to make
[slides :
youtube].
- 16.8. Summary
[slides :
youtube].
- 16.9. An example of DFS forest
slides.
- BFS and Dijkstra's Algorithm for Shortest
Paths
[slides :
youtube
:
ct].
- 17.1. Maps as graphs
[slides :
youtube].
- 17.2. BFS: Breadth First Search
[slides :
youtube].
- 17.2.1. BFS with distances and layers
[slides :
youtube].
- 17.3.1. Problem definition
[slides :
youtube].
- 17.3.2. Flooding, continuous Dijkstra and hot it leads to
the regular Dijkstra algorithm
- Animation of (continuous) Dijkstra, and the idea behind
the Dijkstra algorithm
[youtube].
- Another example..
[youtube].
- 17.3.3. Shortest path in the weighted case using BFS
[slides :
youtube].
- 17.3.4. On the hereditary nature of shortest paths
[slides :
youtube].
- 17.3.5. The basic algorithm: Find the ith closest vertex
[slides :
youtube].
- 17.3.6. How to compute the ith closest vertex?
[slides :
youtube].
- 17.3.7. Dijkstra’s algorithm
[slides :
youtube].
- 17.3.8. Dijkstra using priority queues
[slides :
youtube].
- 17.4. Shortest path trees and variants
[slides :
youtube].
- 17.4.2. Variants on the shortest path problem
[slides :
youtube].
- Dynamic Programming: Shortest Paths and \DFA to Reg
Expressions
[slides :
youtube :
ct]
- 18.1. Shortest Paths with Negative Length Edges
- 18.1.1. Why Dijkstra’s algorithm fails with negative edges
[slides :
youtube].
- 18.1.2. But wait! Things get worse: Negative cycles
[slides :
youtube].
- 18.1.3. Restating problem of Shortest path with
negative edges
[slides :
youtube].
- 18.1.4. Applications of shortest path for negative
weights on edges
[slides :
youtube].
- 18.2. Bellman Ford Algorithm: Shortest path with negative
edges
- 18.3. Shortest Paths in DAGs
[slides :
youtube].
- 18.4. All Pairs Shortest Paths
- 18.4.1. Problem definition and what we can already
do
[slides :
youtube].
- 18.4.2. All Pairs Shortest Paths: A recursive
solution
[slides :
youtube].
- 18.4.3. Floyd-Warshall algorithm
[slides :
youtube].
- 18.5. Summary of shortest path algorithms
[slides :
youtube].
- 18.6. DFA to Regular Expression
[slides :
youtube].
- 18.7. Dynamic Programming: Postscript
[slides :
youtube].
- Greedy algorithms
[slides :
youtube :
ct]
- 19.1. Greedy algorithms by example
[slides :
youtube].
- 19.2. Greedy Algorithms: Tools and Techniques
[slides :
youtube].
- 19.3. Scheduling Jobs to Minimize Average Waiting Time
[slides :
youtube].
- 19.3.1. Exercise: Scheduling Jobs to Minimize Weighted
Average Waiting Time
[slides :
youtube].
- 19.4. Scheduling to Minimize Lateness
[slides :
youtube].
- 19.5. Maximum Weight Subset of Elements: Cardinality
and Beyond
[slides :
youtube].
- 19.6. Interval Scheduling
- 19.6.1. Problem statement, and a few greedy
algorithms that do not work
[slides :
youtube].
- 19.6.2: Interval scheduling - earliest finish time
[slides :
youtube].
- 19.6.3. Proving optimality of earliest finish time
[slides :
youtube].
- 19.7. Greedy algorithms – an epilogue
[slides :
youtube].
- Minimum spanning trees (MST) [slides :
youtube :
ct]
- Minimum Spanning Tree
- 20.2. Safe and unsafe edges
[slides :
youtube].
- 20.3. The Algorithms for computing MST
[slides :
youtube].
- 20.4. Correctness of the MST algorithms
- 20.5. MST algorithm for negative weights, and
non-distinct costs
[slides :
youtube].
- 20.6. Data Structures for MST: Priority Queues and
Union-Find
- 20.6.1. Implementing Borůvka’s Algorithm
[slides :
youtube].
- 20.6.2. Implementing Prim’s Algorithm
[slides :
youtube].
- 20.6.3. Implementing Prim’s algorithm with
priority queues [included in previous part].
- 20.6.4. Union-find data-structure
[slides :
youtube].
- 20.6.5. Implementing Kruskal’s Algorithm
[slides :
youtube].
- 20.7. MST: An epilogue
[slides :
youtube].
- Polynomial time reductions
[slides :
youtube :
ct]
- 21.1. A quick review: Polynomials
[slides :
youtube].
- 21.2. (Polynomial Time) Reductions: Overview
[slides :
youtube].
- 21.3. Examples of Reductions
- 21.4. Polynomial time reductions
- 21.4.1. A quick review of polynomial time
reductions
[slides :
youtube].
- 21.4.2. Polynomial-time reductions and hardness
[slides :
youtube].
- 21.5. Independent Set and Vertex Cover
[slides :
youtube].
- 21.6. The Satisfiability Problem (SAT)
- NP: Nondeterministic polynomial time
[slides :
youtube :
ct]
- 22.1. Review
- 22.1.1. Review: Polynomial reductions
[slides :
youtube].
- 22.1.2. A quick pre-review of complexity classes
[slides :
youtube].
- 22.1.3. Polynomial equivalent problems: What do we
know so far
[slides :
youtube].
- 22.2. NP: Nondeterministic polynomial time
- NP and NP-Completeness
[slides
:
youtube
:
ct]
- 23.1. NP-Completeness: Cook-Levin Theorem
- 23.2. Reducing 3-SAT to Independent Set
[slides :
youtube].
- 23.3. NP-Completeness of Hamiltonian Cycle
- 23.3.1. Reduction from 3SAT to Hamiltonian Cycle:
Basic idea
[slides :
youtube].
- 23.3.2. The reduction: Encoding the formula
constraints
[slides :
youtube].
- 23.3.3. If there is a satisfying assignment, then
there is a Hamiltonian cycle
[slides :
youtube].
- 23.3.4. If there is a Hamiltonian cycle ⇒
∃satisfying assignment
[slides :
youtube].
- 23.4. Hamiltonian cycle in undirected graph
[slides :
youtube].
- Circuit satisfiability and Cook-Levin Theorem
[slides
:
youtube
:
ct]
- 24.1. Recap (what we know about NPC so far)
[slides :
youtube].
- 24.2. Circuit SAT
- 24.3. NP-Completeness of Graph Coloring
- 24.3.1. The coloring problem
[slides :
youtube].
- 24.3.2. Problems related to graph coloring
[slides :
youtube].
- 24.3.3. Showing NP-Completeness of 3 COLORING
- 24.4. Proof of Cook-Levin Theorem
- 24.5. NP-Complete problems to know and remember
[slides :
youtube].
Last modified: Fri 2020-12-04 18:53:43 UTC 2020 by Sariel Har-Peled